Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2005 Dec 29;7(4):E852–E856. doi: 10.1208/aapsj070482

Transport systems for opioid peptides in mammalian tissues

Vadivel Ganapathy 1,, Seiji Miyauchi 2
PMCID: PMC2750954  PMID: 16594637

Abstract

Transmembrane transport of endogenous as well as synthetic opioid peptides is a critical determinant of pharmacokinetics and biologic efficacy of these peptides. This transport process influences the distribution of opioid peptides across the blood-brain barrier and their elimination from the body. A multitude of transport systems that recognize opioid peptides as substrates have been characterized at the functional level, and these transport systems are expressed differentially at different sites in the body. Many of these transport systems have been identified at the molecular level. These include the H+-coupled peptide transporters PEPT1 and PEPT2, the adenosine triphosphate-dependent efflux transporters P-glycoprotein and multidrug resistance-related protein 2, and several members of the organic anion-transporting polypeptide gene family. There are however many additional transport systems that are known to transport opioid peptides but their molecular identities still remain unknown.

Keywords: opioid peptides, transmembrane transport, peptide transporters, P-glycoprotein, multidrug resistance-related protein 2, organic anion-transporting polypeptides, sodium-coupled transporters

Full Text

The Full Text of this article is available as a PDF (176.1 KB).

References

  • 1.Vaccarino AL, Kastin AJ. Endogenous opiates: 2000. Peptides. 2001;22:2257–2328. doi: 10.1016/S0196-9781(01)00566-6. [DOI] [PubMed] [Google Scholar]
  • 2.Smith QR. A review of blood-brain barrier transport techniques. Methods Mol Med. 2003;89:193–208. doi: 10.1385/1-59259-419-0:193. [DOI] [PubMed] [Google Scholar]
  • 3.Banks WA, Kastin AJ. Peptide transport systems for opitates across the blood-brain barrier. Am J Physiol. 1990;259:E1–E10. doi: 10.1152/ajpendo.1990.259.1.E1. [DOI] [PubMed] [Google Scholar]
  • 4.Kastin AJ, Fasold MB, Smith RR, Horner KA, Zadina JE. Saturable brain-to-blood transport of endomorphins. Exp Brain Res. 2001;139:70–75. doi: 10.1007/s002210100736. [DOI] [PubMed] [Google Scholar]
  • 5.Somogyvari-Vigh A, Kastin AJ, Liao J, Zadina JE, Pan W. Endomorphins exit the brain by a saturable efflux system at the basolateral surface of cerebral endothelial cells. Exp Brain Res. 2004;156:224–230. doi: 10.1007/s00221-003-1774-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Fiori A, Cardelli P, Negri L, Savi MR, Strom R, Erspamer V. Deltorphin transport across the blood-brain barrier. Proc. Natl Acad Sci USA. 1997;94:9469–9474. doi: 10.1073/pnas.94.17.9469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Hu H, Miyauchi S, Bridges CC, Smith SB, Ganapathy V. Identification of a novel Na+-and Cl−-coupled transport system for endogenous opioid peptides in retinal pigment epithelium and induction of the transport system by HIV-1 Tat. Biochem J. 2003;375:17–22. doi: 10.1042/BJ20031059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Leibach FH, Ganapathy V. Peptide transporters in the intestine and the kidney. Annu Rev Nutr. 1996;16:99–119. doi: 10.1146/annurev.nu.16.070196.000531. [DOI] [PubMed] [Google Scholar]
  • 9.Zhao K, Luo G, Zhao GM, Schiller PW, Szeto HH. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther. 2003;304:425–432. doi: 10.1124/jpet.102.040147. [DOI] [PubMed] [Google Scholar]
  • 10.Fujita T, Kishida T, Okada N, Ganapathy V, Leibach FH, Yamamoto A. Interaction of kyotorphin and brain peptide transporter in synaptosomes prepared from rat cerebellum: implications of high affinity type H+/peptide transporter PEPT2-mediated transport system. Neurosci. Lett. 1999;271:117–120. doi: 10.1016/S0304-3940(99)00540-6. [DOI] [PubMed] [Google Scholar]
  • 11.Fujita T, Kishida T, Wada M, et al. Functional characterization of brain peptide transporter in rat cerebral cortex: identification of the high-affinity type H+/peptide transporter PEPT2. Brain Res. 2004;997:52–61. doi: 10.1016/j.brainres.2003.10.049. [DOI] [PubMed] [Google Scholar]
  • 12.Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA. 1989;86:695–698. doi: 10.1073/pnas.86.2.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest. 1995;96:1698–1705. doi: 10.1172/JCI118214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Thompson SJ, Koszdin K, Bernards CM. Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology. 2000;92:1392–1399. doi: 10.1097/00000542-200005000-00030. [DOI] [PubMed] [Google Scholar]
  • 15.King M, Su W, Chang A, Zuckerman A, Pasternak GW. Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci. 2001;4:268–274. doi: 10.1038/85115. [DOI] [PubMed] [Google Scholar]
  • 16.Jonker JW, Wagenaar E, van Deemter L, et al. Role of blood-brain barrier P-glycoprotein in limiting brain accumulation and sedative side-effects of asimadoline, a peripherally acting analgaesic drug. Br J Pharmacol. 1999;127:43–50. doi: 10.1038/sj.bjp.0702497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Chen C., Pollack GM. Altered disposition and antinociception of [D-penicillamine(2,5)] enkephalin in mdr1a-gene-deficient mice. J Pharmacol Exp Ther. 1998;287:545–552. [PubMed] [Google Scholar]
  • 18.Chen C, Pollack GM. Enhanced antinociception of the model opioid peptide [D-penicillamine] enkephalin by P-glycoprotein modulation. Pharm Res. 1999;16:296–301. doi: 10.1023/A:1018892811980. [DOI] [PubMed] [Google Scholar]
  • 19.Sarkadi B, Muller M, Homolya L, et al. Interaction of bioactive hydrophobics peptides with the human multidrug transporter. FASEB J. 1994;8:766–770. doi: 10.1096/fasebj.8.10.7914178. [DOI] [PubMed] [Google Scholar]
  • 20.Oude Elferink RPJ, Zadina J. MDR1 P-glycoprotein transports endogenous opioids peptides. Peptides. 2001;22:2015–2020. doi: 10.1016/S0196-9781(01)00564-2. [DOI] [PubMed] [Google Scholar]
  • 21.Kastin AJ, Fasold MB, Zadina JE. Endomorphins, Met-enkephalin, Tyr-MIF-1, and the P-glycoprotein efflux system. Drug Metab Dispos. 2002;30:231–234. doi: 10.1124/dmd.30.3.231. [DOI] [PubMed] [Google Scholar]
  • 22.Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447:653–665. doi: 10.1007/s00424-003-1168-y. [DOI] [PubMed] [Google Scholar]
  • 23.Cattori V, van Montfoort JE, Stieger B, et al. Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatp1, Oatp2 and Oatp3. Pflugers Arch. 2001;443:188–195. doi: 10.1007/s004240100697. [DOI] [PubMed] [Google Scholar]
  • 24.Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol. Exp Ther. 2000;294:73–79. [PubMed] [Google Scholar]
  • 25.Kullaks-Ublick GA, Ismair MG, Stieger B, et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with 3 other OATPs of human liver. Gastroenterology. 2001;120:525–533. doi: 10.1053/gast.2001.21176. [DOI] [PubMed] [Google Scholar]
  • 26.Nozawa T, Tamai I, Sai Y, Nezu J, Tsuji A. Contribution of organic anion transporting polypeptide OATP-C to hepatic elimination of the opioid pentapeptide analogue [D-Ala2, D-Leu5]-enkephalin. J Pharm Pharmacol. 2003;55:1013–1020. doi: 10.1211/0022357021440. [DOI] [PubMed] [Google Scholar]
  • 27.Lee W, Glaeser H, Smith LH, et al. Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry. J Biol Chem. 2005;280:9610–9617. doi: 10.1074/jbc.M411092200. [DOI] [PubMed] [Google Scholar]
  • 28.Reichel C, Gao B, Van Montfoort J, et al. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterology. 1999;117:688–695. doi: 10.1016/S0016-5085(99)70463-4. [DOI] [PubMed] [Google Scholar]
  • 29.Konig J, Cui Y, Nies AT, Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem. 2000;275:23161–23168. doi: 10.1074/jbc.M001448200. [DOI] [PubMed] [Google Scholar]
  • 30.Konig J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol. 2000;278:G156–G164. doi: 10.1152/ajpgi.2000.278.1.G156. [DOI] [PubMed] [Google Scholar]
  • 31.Hoffmaster KA, Zamek-Gliszczynski MJ, Pollack GM, Brouwer KL. Hepatobiliary disposition of the metabolically stable opioid peptide [D-Pen2, D-Pen5]-enkephalin (DPDPE): pharmacokinetic consequences of the interplay between multiple transport systems. J Pharmacol Exp Ther. 2004;311:1203–1210. doi: 10.1124/jpet.104.070201. [DOI] [PubMed] [Google Scholar]
  • 32.Hoffmaster KA, Zamek-Gliszczynski MJ, Pollack GM, Brouwer KL. Multiple transport systems mediate the hepatic uptake and biliary excretion of the metabolically stable opioid peptide [D-penicillamine2,5] enkephalin. Drug Metab Dispos. 2005;33:287–293. doi: 10.1124/dmd.104.001420. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES