Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 Jan 13;7(4):E903–E913. doi: 10.1208/aapsj070488

Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation

Catarina M Silva 1, António J Ribeiro 2, Margarida Figueiredo 3, Domingos Ferreira 4, Francisco Veiga 1,
PMCID: PMC2750960  PMID: 16594643

Abstract

Chitosan-coated alginate microspheres prepared by emulsification/internal gelation were chosen as carriers for a model protein, hemoglobin (Hb), owing to nontoxicity of the polymers and mild conditions of the method. The influence of process variables related to the emulsification step and microsphere recovering and formulation variables, such as alginate gelation and chitosan coating, on the size distribution and encapsulation efficiency was studied. The effect of microsphere coating as well its drying procedure on the Hb release profile was also evaluated. Chitosan coating was applied by either a continuous microencapsulation procedure or a 2-stage coating process. Microspheres with a mean diameter of less than 30 μm and an encapsulation efficiency above 90% were obtained. Calcium alginate cross-linking was optimized by using an acid/CaCO3 molar ratio of 2.5, and microsphere-recovery with acetate buffer led to higher encapsulation efficiency. Hb release in gastric fluid was minimal for air-dried microspheres. Coating effect revealed a total release of 27% for 2-stage coated wet microspheres, while other formulations showed an Hb release above 50%. Lyophilized microspheres behaved similar to wet microspheres, although a higher total protein release was obtained with 2-stage coating. At pH 6.8, uncoated microspheres dissolved in less than 1 hour; however, Hb release from air-dried microspheres was incomplete. Chitosan coating decreased the release rate of Hb, but an incomplete release was obtained. The 2-stage coated microspheres showed no burst effect, whereas the 1-stage coated microspheres permitted a higher protein release.

Keywords: alginate, chitosan, internal gelation, oral protein delivery, microspheres

Full Text

The Full Text of this article is available as a PDF (599.6 KB).

References

  • 1.Fix JA. Oral controlled release technology for peptides: status and future prospects. Pharm Res. 1996;13:1760–1764. doi: 10.1023/A:1016008419367. [DOI] [PubMed] [Google Scholar]
  • 2.Allemann E, Leroux JC, Gurny R. Polymeric nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev. 1998;34:171–189. doi: 10.1016/S0169-409X(98)00039-8. [DOI] [PubMed] [Google Scholar]
  • 3.Polk A, Amsden B, De Yao K, Peng T, Goosen MF. Controlled release of albumin from chitosan-alginate microcapsules. J Pharm Sci. 1994;83:178–185. doi: 10.1002/jps.2600830213. [DOI] [PubMed] [Google Scholar]
  • 4.Huguet ML, Dellacherie E. Calcium alginate beads coated with chitosan: effect of the structure of encapsulated materials on their release. Process Biochem. 1996;31:745–751. doi: 10.1016/S0032-9592(96)00032-5. [DOI] [Google Scholar]
  • 5.Okhamafe AO, Amsden B, Chu W, Goosen MF. Modulation of protein release from chitosan-alginate microcapsules using the pH-sensitive polymer hydroxypropyl methylcellulose acetate succinate. J Microencapsul. 1996;13:497–508. doi: 10.3109/02652049609026035. [DOI] [PubMed] [Google Scholar]
  • 6.Liu LS, Liu SQ, Ng SY, et al. Controlled release of interleukin 2 for tumor immunotherapy using alginate/chitosan porous microspheres. J Control Release. 1997;43:65–74. doi: 10.1016/S0168-3659(96)01471-X. [DOI] [Google Scholar]
  • 7.Ramadas M, Paul W, Dileep KJ, Anitha Y, Sharma CP. Lipoinsulin encapsulated alginate-chitosan capsules: intestinal delivery in diabetic rats. J Microencapsul. 2000;17:405–411. doi: 10.1080/026520400405660. [DOI] [PubMed] [Google Scholar]
  • 8.Coppi G, Iannuccelli V, Leo E, Bernabei MT, Cameroni R. Protein immobilization in crosslinked alginate microparticles. J Microencapsul. 2002;19:37–44. doi: 10.1080/02652040110055621. [DOI] [PubMed] [Google Scholar]
  • 9.Vandenberg GW, De La Noue J. Evaluation of protein release from chitosan-alginate microcapsules produced using external or internal gelation. J Microencapsul. 2001;18:433–441. doi: 10.1080/02652040010019578. [DOI] [PubMed] [Google Scholar]
  • 10.Wang K, He Z. Alginate-konjac glucomannan-chitosan beads as controlled release matrix. Int J Pharm. 2002;244:117–126. doi: 10.1016/S0378-5173(02)00324-1. [DOI] [PubMed] [Google Scholar]
  • 11.Chandy T, Mooradian DL, Rao GH. Chitosan/polyethylene glycol-alginate microcapsules for oral delivery of hirudin. J Appl Polym Sci. 1998;70:2143–2153. doi: 10.1002/(SICI)1097-4628(19981212)70:11<2143::AID-APP7>3.0.CO;2-L. [DOI] [Google Scholar]
  • 12.Timmy SA, Victor SP, Sharma CP, Kumari V. Betacyclodextrin complexed insulin-loaded alginate microspheres—oral delivery system. Trends Biomater Artif Organs. 2002;15:48–53. [Google Scholar]
  • 13.Onal S, Zihnioglu F. Encapsulation of insulin in chitosan-coated alginate beads: oral therapeutic peptide delivery. Artif Cells Blood Substit Immobil Biotechnol. 2002;30:229–237. doi: 10.1081/BIO-120004343. [DOI] [PubMed] [Google Scholar]
  • 14.Boadi DK, Neufeld RJ. Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb Technol. 2001;28:590–595. doi: 10.1016/S0141-0229(01)00295-2. [DOI] [PubMed] [Google Scholar]
  • 15.DeGroot AR, Neufeld RJ. Encapsulation of urease in alginate beads and protection from α-chymotrypsin with chitosan membranes. Enzyme Microb Technol. 2001;29:321–327. doi: 10.1016/S0141-0229(01)00393-3. [DOI] [Google Scholar]
  • 16.Elcin AE, Elcin YM. Polycation-coated polyanion microspheres of urease for urea hydrolysis. Artif Cells Blood Substit Immobil Biotechnol. 2000;28:95–111. doi: 10.3109/10731190009119788. [DOI] [PubMed] [Google Scholar]
  • 17.Albarghouthi M, Fara DA, Saleem M, El-Thaher T, Matalka K, Badwan A. Immobilization of antibodies on alginate-chitosan beads. Int J Pharm. 2000;206:23–34. doi: 10.1016/S0378-5173(00)00470-1. [DOI] [PubMed] [Google Scholar]
  • 18.Chandy T, Mooradian DL, Rao GH. Evaluation of modified alginate-chitosan-polyethylene glycol microcapsules for cell encapsulation. Artif Organs. 1999;23:894–903. doi: 10.1046/j.1525-1594.1999.06244.x. [DOI] [PubMed] [Google Scholar]
  • 19.Klinkenberg G, Lystad KQ, Levine TDW, Dyrset N. Cell release from alginate immobilized Lactococcus lactis ssp lactis in chitosan and alginate coated beads. J Dairy Sci. 2001;84:1118–1127. doi: 10.3168/jds.S0022-0302(01)74572-9. [DOI] [PubMed] [Google Scholar]
  • 20.Bang SS, Pazirandeh M. Physical properties and heavy metal uptake of encapsulatedEscherichia coli expressing a metal binding gene (NCP) J Microencapsul. 1999;16:489–499. doi: 10.1080/026520499288933. [DOI] [PubMed] [Google Scholar]
  • 21.Serp D, Cantana E, Heinzen C, Von-Stockar U, Marison IW. Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng. 2000;70:41–53. doi: 10.1002/1097-0290(20001005)70:1<41::AID-BIT6>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  • 22.Zhou Y, Martins E, Groboillot A, Champagne CP, Neufeld RJ. Spectrophotometric quantification of lactic bacteria in alginate and control of cell release with chitosan coating. J Appl Microbiol. 1998;84:342–348. doi: 10.1046/j.1365-2672.1998.00348.x. [DOI] [Google Scholar]
  • 23.Li X. The use of chitosan to increase the stability of calcium alginate beads with entrapped yeast cells. Biotechnol Appl Biochem. 1996;23:269–272. [PubMed] [Google Scholar]
  • 24.Quong D, Neufeld RJ. DNA protection from extracapsular nucleases, within chitosan- or poly-L-lysine-coated alginate beads. Biotechnol Bioeng. 1998;60:124–134. doi: 10.1002/(SICI)1097-0290(19981005)60:1<124::AID-BIT14>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  • 25.Quong D, Yeo JN, Neufeld RJ. Stability of chitosan and poly-L-lysine membranes coating DNA-alginate beads when exposed to hydrolytic enzymes. J Microencapsul. 1999;16:73–82. doi: 10.1080/026520499289329. [DOI] [PubMed] [Google Scholar]
  • 26.Quong D, O’Neil IK, Poncelet D, Neufeld RJ. Gastrointestinal protection of cellular component DNA within an artificial cell system for environment carcinogen biomonitoring. In: Wijffels RJ, Buitelaar RM, Bucke C, Tramper J, editors. Immobilized Cells: Basics and Applications. Progress in Biotechnology. Amsterdam: Elsevier; 1996. pp. 814–820. [Google Scholar]
  • 27.Alexakis T, Boadi DK, Quong D, et al. Microencapsulation of DNA within alginate microspheres and crosslinked chitosan membranes for in vivo application. Appl Biochem Biotechnol. 1995;50:93–106. doi: 10.1007/BF02788043. [DOI] [PubMed] [Google Scholar]
  • 28.Gombotz WR, Wee SF. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31:267–285. doi: 10.1016/S0169-409X(97)00124-5. [DOI] [PubMed] [Google Scholar]
  • 29.Lencki R, Neufeld R, Spinney T, inventor. Method of Producing Microspheres. US patent 4 822 534. April 18, 1989.
  • 30.Nilsson K, Birnbaum S, Flygare S, et al. A general method for the immobilization of cells with preserved viability. Eur J Appl Microbiol Biotechnol. 1983;17:319–326. doi: 10.1007/BF00499497. [DOI] [Google Scholar]
  • 31.Wan LS, Heng PW, Chan LW. Drug encapsulation in alginate microspheres by emulsification. J Microencapsul. 1992;9:309–316. doi: 10.3109/02652049209021245. [DOI] [PubMed] [Google Scholar]
  • 32.Chan L, Lee H, Heng P. Production of alginate microspheres by internal gelation using an emulsification method. Int J Pharm. 2002;242:259–262. doi: 10.1016/S0378-5173(02)00170-9. [DOI] [PubMed] [Google Scholar]
  • 33.Poncelet D, Lencki R, Beaulieu C, Halle JP, Neufeld RJ, Fournier A. Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl Microbiol Biotechnol. 1992;38:39–45. doi: 10.1007/BF00169416. [DOI] [PubMed] [Google Scholar]
  • 34.Poncelet D. Production of alginate beads by emulsification/internal gelation. Ann NY Acad Sci. 2001;944:74–82. doi: 10.1111/j.1749-6632.2001.tb03824.x. [DOI] [PubMed] [Google Scholar]
  • 35.Quong D, Neufeld RJ, Skjak-Braek G, Poncelet D. External versus internal source of calcium during the gelation of alginate beads for DNA encapsulation. Biotechnol Bioeng. 1998;57:438–446. doi: 10.1002/(SICI)1097-0290(19980220)57:4<438::AID-BIT7>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  • 36.Murata Y, Maeda T, Miyamoto E, Kawashima S. Preparation of chitosan-reinforced alginate gel beads—effects of chitosan on gel matrix erosion. Int J Pharm. 1993;96:139–145. doi: 10.1016/0378-5173(93)90221-Z. [DOI] [Google Scholar]
  • 37.Takahashi T, Takayama K, Machida Y, Nagai T. Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm. 1990;61:35–41. doi: 10.1016/0378-5173(90)90041-2. [DOI] [Google Scholar]
  • 38.Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2) Pharm Res. 1994;11:1358–1361. doi: 10.1023/A:1018967116988. [DOI] [PubMed] [Google Scholar]
  • 39.Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res. 1994;11:1186–1189. doi: 10.1023/A:1018901302450. [DOI] [PubMed] [Google Scholar]
  • 40.Lueßen HL, Lehr C-M, Rentel C-O, et al. Bioadhesive polymers for the peroral delivery of peptide drugs. J Control Release. 1994;29:329–338. doi: 10.1016/0168-3659(94)90078-7. [DOI] [Google Scholar]
  • 41.Ribeiro AJ, Neufeld RJ, Arnaud P, Chaumeil JC. Microen capsulation of lipophilic drugs in chitosan-coated alginate microspheres. Int J Pharm. 1999;187:115–123. doi: 10.1016/S0378-5173(99)00173-8. [DOI] [PubMed] [Google Scholar]
  • 42.Chickering DE, Jacob JS, Desai TA, et al. Bioadhesive microspheres: III. “In vivo” transit and biovailability study of drugloaded alginate and poly(fumaric-co-sebacic anhydride) microspheres. J Control Release. 1997;48:35–46. doi: 10.1016/S0168-3659(97)00054-0. [DOI] [Google Scholar]
  • 43.Lehr C-M, Bouwstra JA, Schacht EH, Junginger HE. “In vitro” evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm. 1992;78:43–48. doi: 10.1016/0378-5173(92)90353-4. [DOI] [Google Scholar]
  • 44.Tin SSH, Boadi DK, Neufeld RJ. DNA encapsulation by an airagitated, liquid-liquid mixer. Biotechnol Bioeng. 1997;56:464–470. doi: 10.1002/(SICI)1097-0290(19971120)56:4<464::AID-BIT12>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 45.Yotsuyanagi T, Ohkubo T, Ohhashi T, Ikeda K. Calcium-induced gelation of alginic acid and pH-sensitive reswelling of dried gels. Chem Pharm Bull (Tokyo) 1987;35:1555–1563. [Google Scholar]
  • 46.Fundueanu G, Nastruzzi C, Carpov A, Desbrieres J, Rinaudo M. Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials. 1999;20:1427–1435. doi: 10.1016/S0142-9612(99)00050-2. [DOI] [PubMed] [Google Scholar]
  • 47.Vandenberg GW, Drolet C, Scott SL, de la Noue J. Factors affecting protein release from alginate-chitosan coacervate microcapsules during production and gastric/intestinal simulation. J Control Release. 2001;77:297–307. doi: 10.1016/S0168-3659(01)00517-X. [DOI] [PubMed] [Google Scholar]
  • 48.Mumper RJ, Hoffman A, Puolakkainen PA, Bouchard LS, Gombotz WR. Calcium-alginate beads for the oral delivery of transforming growth factor-β1 (TGF-β1): stabilization of TGF-β1 by the addition of polyacrylic acid within acid-treated beads. J Control Release. 1994;30:241–251. doi: 10.1016/0168-3659(94)90030-2. [DOI] [Google Scholar]
  • 49.Coppi G, Iannuccelli V, Leo E, Bernabei MT, Cameroni R. Chitosan-alginate microparticles as a protein carrier. Drug Dev Ind Pharm. 2001;27:393–400. doi: 10.1081/DDC-100104314. [DOI] [PubMed] [Google Scholar]
  • 50.Huguet ML, Groboillot A, Neufeld RJ, Poncelet D, Dellacherie E. Hemoglobin encapsulation in chitosan/calcium alginate beads. J Appl Polym Sci. 1994;51:1427–1432. doi: 10.1002/app.1994.070510810. [DOI] [Google Scholar]
  • 51.Rilling P, Walter T, Pommersheim R, Vogt W. Encapsulation of cytochrome C by multilayer microcapsules: a model for improved enzyme immobilization. J Membr Sci. 1997;129:283–287. doi: 10.1016/S0376-7388(97)00042-2. [DOI] [Google Scholar]
  • 52.Dumitriu S, Chornet E. Inclusion and release of proteins from polysaccharide-based polyion complexes. Adv Drug Deliv Rev. 1998;31:223–246. doi: 10.1016/S0169-409X(97)00120-8. [DOI] [PubMed] [Google Scholar]
  • 53.Poncelet D, Poncelet De Smet B, Beaulieu C, Huguet ML, Fournier A, Neufeld RJ. Production of alginate beads by emulsification/internal gelation. II. Physicochemistry. Appl Microbiol Biotechnol. 1995;43:644–650. doi: 10.1007/BF00164768. [DOI] [Google Scholar]
  • 54.Amsden B, Turner N. Diffusion characteristics of calcium alginate gels. Biotechnol Bioeng. 1999;65:605–610. doi: 10.1002/(SICI)1097-0290(19991205)65:5<605::AID-BIT14>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 55.Ostberg T, Lund EM, Graffner C. Calcium alginate matrices for oral multiple unit administration. IV. Release characteristics in different media. Int J Pharm. 1994;112:241–248. doi: 10.1016/0378-5173(94)90360-3. [DOI] [Google Scholar]
  • 56.Hari PR, Chandy T, Sharma CP. Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin. J Microencapsul. 1996;13:319–329. doi: 10.3109/02652049609026019. [DOI] [PubMed] [Google Scholar]
  • 57.Gonzales-Rodriguez ML, Holgado MA, Sanchez-Lafuente C, Rabasco AM, Fini A. Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm. 2002;232:225–234. doi: 10.1016/S0378-5173(01)00915-2. [DOI] [PubMed] [Google Scholar]
  • 58.Takka S, Acarturk F. Calcium alginate microparticles for oral administration. I. Effect of sodium alginate type on drug release and drug entrapment efficiency. J Microencapsul. 1999;16:275–290. doi: 10.1080/026520499289022. [DOI] [PubMed] [Google Scholar]
  • 59.Huguet ML, Neufeld RJ, Dellacherie E. Calcium-alginate beads coated with polycationic polymers: comparison of chitosan and DEAE-dextran. Process Biochem. 1996;31:347–353. doi: 10.1016/0032-9592(95)00076-3. [DOI] [Google Scholar]
  • 60.Kearney L, Upton M, McLoughlin A. Enhancing the viability ofLactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cyroprotectants. Appl Environ Microbiol. 1990;56:3112–3116. doi: 10.1128/aem.56.10.3112-3116.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Smidsrod O, Skjak Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71–78. doi: 10.1016/0167-7799(90)90139-O. [DOI] [PubMed] [Google Scholar]
  • 62.Sezer AD, Akbuga J. Release characteristics of chitosan treated alginate beads. I. Sustained release of a macromolecular drug from chitosan treated alginate beads. J Microencapsul. 1999;16:195–203. doi: 10.1080/026520499289176. [DOI] [PubMed] [Google Scholar]
  • 63.Shu XZ, Zhu KJ. The release behavior of brilliant blue from calcium-alginate gel beads coated with chitosan: the preparation method effect. Eur J Pharm Biopharm. 2002;53:193–201. doi: 10.1016/S0939-6411(01)00247-8. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES