Abstract
Due to the complexity of the disease, several hypotheses exist to explain the etiology of depression. The monoamine theory of depression suggests that disruptions in the serotonergic and noradrenergic systems result in depressive symptoms. Therefore, the serotonin transporter (SERT) has become a pharmacological target for treating these symptoms. This review will discuss what is known about the molecular interactions of antidepressants with SERT. The effects of antidepressants on SERT regulation and expression in addition to the receptors that may be involved in mediating these effects will be addressed. Specifically, how changes to SERT expression following chronic antidepressant treatment may contribute to the therapeutic benefits of antidepressants will be discussed. Furthermore, the effects ofSERT gene polymorphisms on antidepressant efficacy will be examined. Finally, a brief overview of other hypotheses of depression will be addressed as well as factors that must be considered for future antidepressant development.
Keywords: SSRIs, antidepressant, serotonin transporter, depression, reuptake
Full Text
The Full Text of this article is available as a PDF (232.6 KB).
References
- 1.Heninger GR, Delgado PL, Charney DS. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry. 1996;29:2–11. doi: 10.1055/s-2007-979535. [DOI] [PubMed] [Google Scholar]
- 2.Nutt DJ. The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol. 2002;17:S1–S12. doi: 10.1097/00004850-200201000-00001. [DOI] [PubMed] [Google Scholar]
- 3.Rush A, Ryan N. Current and emerging therapeutics for depression. In: Davis K, Charney D, Coyle J, Nemeroff C, editors. Neuropsychopharmacology: The Fifth Generation of Progress. New York: Raven Press; 2002. pp. 1081–1095. [Google Scholar]
- 4.Owens MJ, Morgan WN, Plott SJ, Nemeroff CB. Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther. 1997;283:1305–1322. [PubMed] [Google Scholar]
- 5.Ban TA. Pharmacotherapy of depression: a historical analysis. J Neural Transm. 2001;108:707–716. doi: 10.1007/s007020170047. [DOI] [PubMed] [Google Scholar]
- 6.Richelson E. The clinical relevance of antidepressant interaction with neurotransmitter transporters and receptors. Psychopharmacol Bull. 2002;36:133–150. [PubMed] [Google Scholar]
- 7.Steffens DC, Krishnan KR, Helms MJ. Are SSRIs better than TCAs? Comparison of SSRIs and TCAs: a meta-analysis. Depress Anxiety. 1997;6:10–18. doi: 10.1002/(SICI)1520-6394(1997)6:1<10::AID-DA2>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
- 8.Song F, Freemantle N, Sheldon TA, et al. Selective serotonin reuptake inhibitors: meta-analysis of efficacy and acceptability. BMJ. 1993;306:683–687. doi: 10.1136/bmj.306.6879.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Fava M. New approaches to the treatment of refractory depression. J Clin Psychiatry. 2000;61:26–32. [PubMed] [Google Scholar]
- 10.Gutierrez MA, Stimmel GL, Aiso JY. Venlafaxine a 2003 update. Clin Ther. 2003;25:2138–2154. doi: 10.1016/S0149-2918(03)80210-2. [DOI] [PubMed] [Google Scholar]
- 11.Stahl SM, Grady MM. Differences in mechanism of action between current and future antidepressants. J Clin Psychiatry. 2003;64:13–17. [PubMed] [Google Scholar]
- 12.Shelton RC. The dual-action hypothesis: does pharmacology matter? J Clin Psychiatry. 2004;65:5–10. [PubMed] [Google Scholar]
- 13.Barker EL, Perlman MA, Adkins EM, et al. High affinity recognition of serotonin transporter antagonists defined, by species-scanning mutagenesis. An aromatic residue in transmembrane domain I dictates, species-selective recognition of citalopram and mazindol. J Biol Chem. 1998;273:19459–19468. doi: 10.1074/jbc.273.31.19459. [DOI] [PubMed] [Google Scholar]
- 14.Ravna AW, Sylte I, Dahl SG. Molecular mechanism of citalopram and cocaine interactions with neurotransmitter transporters. J Pharmacol Exp Ther. 2003;307:34–41. doi: 10.1124/jpet.103.054593. [DOI] [PubMed] [Google Scholar]
- 15.Kitayama S, Shimada S, Xu H, Markham L, Donovan DM, Uhl GR. Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc Natl Acad Sci USA. 1992;89:7782–7785. doi: 10.1073/pnas.89.16.7782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Barker EL, Moore KR, Rakhshan F, Blakely RD. Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J Neurosci. 1999;19:4705–4717. doi: 10.1523/JNEUROSCI.19-12-04705.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Paczkowski FA, Bryan-Lluka LJ. Tyrosine residue 271 of the norepinephrine transporter is an important determinant of its pharmacology. Brain Res Mol Brain Res. 2001;97:32–42. doi: 10.1016/S0169-328X(01)00295-9. [DOI] [PubMed] [Google Scholar]
- 18.Roubert C, Cox PJ, Bruss M, Hamon M, Bonisch H, Giros B. Determination of residues in the norepinephrine transporter that are critical for tricyclic antidepressant affinity. J Biol Chem. 2001;276:8254–8260. doi: 10.1074/jbc.M009798200. [DOI] [PubMed] [Google Scholar]
- 19.Paczkowski FA, Bonisch H, Bryan-Lluka LJ. Pharmacological properties of the naturally occurring Ala(457)Pro variant of the human norepinephrine transporter. Pharmacogenetics. 2002;12:165–173. doi: 10.1097/00008571-200203000-00010. [DOI] [PubMed] [Google Scholar]
- 20.Roman DL, Walline CC, Rodriguez GJ, Barker EL. Interactions of antidepressants with the serotonin transporter: a contemporary molecular analysis. Eur J Pharmacol. 2003;479:53–63. doi: 10.1016/j.ejphar.2003.08.056. [DOI] [PubMed] [Google Scholar]
- 21.Barker EL, Blakely RD. Identification of a single amino acid, phenylalanine 586, that is responsible for high affinity interactions of tricyclic antidepressants with the human serotonin transporter. Mol Pharmacol. 1996;50:957–965. [PubMed] [Google Scholar]
- 22.Schloss P, Williams DC. The serotonin transporter: a primary target for antidepressant drugs. J Psychopharmacol. 1998;12:115–121. doi: 10.1177/026988119801200201. [DOI] [PubMed] [Google Scholar]
- 23.Vetulani J, Nalepa I. Antidepressants: past, present and future. Eur J Pharmacol. 2000;405:351–363. doi: 10.1016/S0014-2999(00)00565-3. [DOI] [PubMed] [Google Scholar]
- 24.Qian Y, Galli A, Ramamoorthy S, Risso S, DeFelice LJ, Blakely RD. Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression. J Neurosci. 1997;17:45–57. doi: 10.1523/JNEUROSCI.17-01-00045.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Ramamoorthy S, Giovanetti E, Qian Y, Blakely RD. Phosphorylation and regulation of antidepressant-sensitive serotonin transporters. J. Biol Chem. 1998;273:2458–2466. doi: 10.1074/jbc.273.4.2458. [DOI] [PubMed] [Google Scholar]
- 26.Ramamoorthy S, Blakely RD. Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science. 1999;285:763–766. doi: 10.1126/science.285.5428.763. [DOI] [PubMed] [Google Scholar]
- 27.Donati RJ, Rasenick MM. G protein signaling and the molecular basis of antidepressant action. Life Sci. 2003;73:1–17. doi: 10.1016/S0024-3205(03)00249-2. [DOI] [PubMed] [Google Scholar]
- 28.Ramamoorthy S, Cool DR, Mahesh VB, et al. Regulation of the human serotonin transporter. Cholera toxin-induced stimulation of serotonin uptake in human placental choriocarcinoma cells is accompanied by increased serotonin transporter mRNA levels and serotonin transporter-specific ligand binding. J Biol Chem. 1993;268:21626–21631. [PubMed] [Google Scholar]
- 29.Zhu CB, Hewlett WA, Feoktistov I, Biaggioni I, Blakely RD. Adenosine receptor, protein kinase G, and p38 mitogen-activated protein kinase-dependent up-regulation of serotonin transporters involves both transporter trafficking and activation. Mol Pharmacol. 2004;65:1462–1474. doi: 10.1124/mol.65.6.1462. [DOI] [PubMed] [Google Scholar]
- 30.Miller KJ, Hoffman BJ. Adenosine A3 receptors regulate serotonin transport via nitric oxide and cGMP. J Biol Chem. 1994;269:27351–27356. [PubMed] [Google Scholar]
- 31.Samuvel DJ, Jayanthi LD, Bhat NR, Ramamoorthy S. A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J Neurosci. 2005;25:29–41. doi: 10.1523/JNEUROSCI.3754-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Haase J, Killian AM, Magnani F, Williams C. Regulation of the serotonin transporter by interacting proteins. Biochem Soc Trans. 2001;29:722–728. doi: 10.1042/BST0290722. [DOI] [PubMed] [Google Scholar]
- 33.Quick MW. Role of syntaxin 1A on serotonin transporter expression in developing thalamocortical neurons. Int J Dev Neurosci. 2002;20:219–224. doi: 10.1016/S0736-5748(02)00021-7. [DOI] [PubMed] [Google Scholar]
- 34.Quick MW. Regulating the conducting states of a mammalian serotonin transporter. Neuron. 2003;40:537–549. doi: 10.1016/S0896-6273(03)00605-6. [DOI] [PubMed] [Google Scholar]
- 35.Bauman AL, Apparsundaram S, Ramamoorthy S, Wadzinski BE, Vaughan RA, Blakely RD. Cocaine and antidepressant-sensitive biogenic amine transporters exist in regulated complexes with protein phosphatase 2A. J Neurosci. 2000;20:7571–7578. doi: 10.1523/JNEUROSCI.20-20-07571.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Rausch JL, Gillespie CF, Fei Y. Antidepressant effects on kinase gene expression patterns in rat brain. Neurosci Lett. 2002;334:91–94. doi: 10.1016/S0304-3940(02)01106-0. [DOI] [PubMed] [Google Scholar]
- 37.Gelenberg AJ, Chesen CL. How fast are antidepressants? J Clin Psychiatry. 2000;61:712–721. doi: 10.4088/jcp.v61n1002. [DOI] [PubMed] [Google Scholar]
- 38.Potter WZ, Hollister LE. Antidepressant agents. In: Katzung BG, editor. Basic & Clinical Pharmacology. New York: Lange Medical Books/McGraw-Hill; 2004. pp. 482–496. [Google Scholar]
- 39.Horschitz S, Hummerich R, Schloss P. Down-regulation of the rat serotonin transporter upon exposure to a selective serotonin reuptake inhibitor. Neuroreport. 2001;12:2181–2184. doi: 10.1097/00001756-200107200-00027. [DOI] [PubMed] [Google Scholar]
- 40.Benmansour S, Cecchi M, Morilak DA. Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci. 1999;19:10494–10501. doi: 10.1523/JNEUROSCI.19-23-10494.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A. Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci. 2002;22:6766–6772. doi: 10.1523/JNEUROSCI.22-15-06766.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Gould GG, Pardon MC, Morilak DA, Frazer A. Regulatory effects of reboxetine treatment alone, or following paroxetine treatment, on brain noradrenergic and serotonergic systems. Neuropsychopharmacology. 2003;28:1633–1641. doi: 10.1038/sj.npp.1300236. [DOI] [PubMed] [Google Scholar]
- 43.Kugaya A, Seneca NM, Snyder PJ, et al. Changes in humanin vivo serotonin and dopamine transporter availabilities during chronic antidepressant administration. Neuropsychopharmacology. 2003;28:413–420. doi: 10.1038/sj.npp.1300036. [DOI] [PubMed] [Google Scholar]
- 44.Plein H, Berk M. The platelet as a peripheral marker in psychiatric illness. Hum Psychopharmacol. 2001;16:229–236. doi: 10.1002/hup.251. [DOI] [PubMed] [Google Scholar]
- 45.Alvarez JC, Gluck N, Arnulf I, et al. Decreased platelet serotonin transporter sites and increased platelet inositol triphosphate levels in patients with unipolar depression: effects of clomipramine and fluoxetine. Clin Pharmacol Ther. 1999;66:617–624. doi: 10.1053/cp.1999.v66.103402001. [DOI] [PubMed] [Google Scholar]
- 46.Hébert C, Habimana A, Élie R, Reader TA. Effects of chronic antidepressant treatments on 5-HT and NA transporters in rat brain: an autoradiographic study. Neurochem Int. 2001;38:63–74. doi: 10.1016/S0197-0186(00)00043-7. [DOI] [PubMed] [Google Scholar]
- 47.Yau JL, Kelly PA, Olsson T, Noble J, Seckl JR. Chronic amitriptyline administration increases serotonin transporter binding sites in the hippocampus of aged rats. Neurosci Lett. 1999;261:183–185. doi: 10.1016/S0304-3940(98)00997-5. [DOI] [PubMed] [Google Scholar]
- 48.Lima L, Urbina M. Serotonin transporter modulation in blood lymphocytes from patients with major depression. Cell Mol Neurobiol. 2002;22:797–804. doi: 10.1023/A:1021869310702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Schloss P, Henn FA. New insights into the mechanisms of antidepressant therapy. Pharmacol Ther. 2004;102:47–60. doi: 10.1016/j.pharmthera.2004.02.001. [DOI] [PubMed] [Google Scholar]
- 50.Piñeyro G, Blier P. Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev. 1999;51:533–591. [PubMed] [Google Scholar]
- 51.Celada P, Puig M, Amargos-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004;29:252–265. [PMC free article] [PubMed] [Google Scholar]
- 52.Hensler JG. Differential regulation of 5-HT1A receptor-G protein interactions in brain following chronic antidepressant administration. Neuropsychopharmacology. 2002;26:565–573. doi: 10.1016/S0893-133X(01)00395-5. [DOI] [PubMed] [Google Scholar]
- 53.Ase AR, Reader TA, Hen R, Riad M, Descarries L. Regional changes in density of serotonin transporter in the brain of 5-HT1A and 5-HT1B knockout mice, and of serotonin innervation in the 5-HT1B knockout. J Neurochem. 2001;78:619–630. doi: 10.1046/j.1471-4159.2001.00437.x. [DOI] [PubMed] [Google Scholar]
- 54.Daws LC, Gerhardt GA, Frazer A. 5-HT1B antagonists modulate clearance of extracellular serotonin in rat hippocampus. Neurosci Lett. 1999;266:165–168. doi: 10.1016/S0304-3940(99)00277-3. [DOI] [PubMed] [Google Scholar]
- 55.Daws LC, Gould GG, Teicher SD, Gerhardt GA, Frazer A. 5-HT(1B) receptor-mediated regulation of serotonin clearance in rat hippocampus in vivo. J Neurochem. 2000;75:2113–2122. doi: 10.1046/j.1471-4159.2000.0752113.x. [DOI] [PubMed] [Google Scholar]
- 56.Malagié I, David DJ, Jolliet P, Hen R, Bourin M, Gardier AM. Improved efficacy of fluoxetine in increasing hippocampal 5-hydroxytryptamine outflow in 5-HT1B receptor knock-out mice. Eur J Pharmacol. 2002;443:99–104. doi: 10.1016/S0014-2999(02)01604-7. [DOI] [PubMed] [Google Scholar]
- 57.Neumaier JF, Root DC, Hamblin MW. Chronic fluoxetine reduces serotonin transporter mRNA and 5-HT1B mRNA in a sequential manner in the rat dorsal raphe nucleus. Neuropsychopharmacology. 1996;15:515–522. doi: 10.1016/S0893-133X(96)00095-4. [DOI] [PubMed] [Google Scholar]
- 58.Artigas F, Perez V, Alvarez E. Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch Gen Psychiatry. 1994;51:248–251. doi: 10.1001/archpsyc.1994.03950030084009. [DOI] [PubMed] [Google Scholar]
- 59.Shalom G, Gur E, Kar LD, Newman ME. Repeated administration of the 5-HT(1B) receptor antagonist SB-224289 blocks the desensitisation of 5-HT(1B) autoreceptors induced by fluoxetine in rat frontal cortex. Naunyn Schmiedebergs Arch Pharmacol. 2004;370:84–90. doi: 10.1007/s00210-004-0958-x. [DOI] [PubMed] [Google Scholar]
- 60.Ansah TA, Ramamoorthy S, Montanez S, Daws LC, Blakely RD. Calcium-dependent inhibition of synaptosomal serotonin transport by the alpha 2-adrenoceptor agonist 5-bromo-N-[4,5-dihydro-1H-imidazol-2-yl]-6-quinoxalinamine (UK14304) J Pharmacol Exp Ther. 2003;305:956–965. doi: 10.1124/jpet.102.047134. [DOI] [PubMed] [Google Scholar]
- 61.Ramamoorthy S, Bauman AL, Moore KR, et al. Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA. 1993;90:2542–2546. doi: 10.1073/pnas.90.6.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Heils A, Teufel A, Petri S, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem. 1996;66:2621–2624. doi: 10.1046/j.1471-4159.1996.66062621.x. [DOI] [PubMed] [Google Scholar]
- 63.Lesch KP, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527–1531. doi: 10.1126/science.274.5292.1527. [DOI] [PubMed] [Google Scholar]
- 64.Rausch JL, Johnson ME, Fei YJ, et al. Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol Psychiatry. 2002;51:723–732. doi: 10.1016/S0006-3223(01)01283-5. [DOI] [PubMed] [Google Scholar]
- 65.Yu YW, Tsai SJ, Chen TJ, Lin CH, Hong CJ. Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry. 2002;7:1115–1119. doi: 10.1038/sj.mp.4001141. [DOI] [PubMed] [Google Scholar]
- 66.Pollock BG, Ferrell RE, Mulsant BH, et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology. 2000;23:587–590. doi: 10.1016/S0893-133X(00)00132-9. [DOI] [PubMed] [Google Scholar]
- 67.Durham LK, Webb SM, Milos PM, Clary CM, Seymour AB. The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl) 2004;174:525–529. doi: 10.1007/s00213-003-1562-3. [DOI] [PubMed] [Google Scholar]
- 68.Ozaki N, Goldman D, Kaye WH, et al. Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype. Mol Psychiatry. 2003;8:933–936. doi: 10.1038/sj.mp.4001365. [DOI] [PubMed] [Google Scholar]
- 69.Kilic F, Murphy DL, Rudnick G. A human serotonin transporter mutation causes constitutive activation of transport activity. Mol Pharmacol. 2003;64:440–446. doi: 10.1124/mol.64.2.440. [DOI] [PubMed] [Google Scholar]
- 70.Smith RS. The macrophage theory of depression. Med Hypotheses. 1991;35:298–306. doi: 10.1016/0306-9877(91)90272-Z. [DOI] [PubMed] [Google Scholar]
- 71.Connor TJ, Leonard BE. Depression stress and immunological activation: the role of cytokines in depressive disorders. Life Sci. 1998;62:583–606. doi: 10.1016/S0024-3205(97)00990-9. [DOI] [PubMed] [Google Scholar]
- 72.Pfennig A, Kunzel HE, Kern N, et al. Hypothalamus-pituitary-adrenal system regulation and suicidal behavior in depression. Biol Psychiatry. 2005;57:336–342. doi: 10.1016/j.biopsych.2004.11.017. [DOI] [PubMed] [Google Scholar]
- 73.Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry. 2002;7:468–473. doi: 10.1038/sj.mp.4000995. [DOI] [PubMed] [Google Scholar]
- 74.Capuron L, Neurauter G, Musselman DL, et al. Interferon-alpha-induced changes in tryptophan metabolism: relationship to depression and paroxetine treatment. Biol Psychiatry. 2003;54:906–914. doi: 10.1016/S0006-3223(03)00173-2. [DOI] [PubMed] [Google Scholar]
- 75.Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:201–217. doi: 10.1016/j.pnpbp.2004.11.003. [DOI] [PubMed] [Google Scholar]
- 76.Bschor T, Baethge C, Adli M, Lewitzka U, Eichmann U, Bauer M. Hypothalamic-pituitary-thyroid system activity during lithium augm entation therapy in patients with unipolar major depression. J Psychiatry Neurosci. 2003;28:210–216. [PMC free article] [PubMed] [Google Scholar]
- 77.Sauvage MF, Marquet P, Rousseau A, Raby C, Buxeraud J, Lachatre G. Relationship between psychotropic drugs and thyroid function: a review. Toxicol Appl Pharmacol. 1998;149:127–135. doi: 10.1006/taap.1998.8367. [DOI] [PubMed] [Google Scholar]
- 78.Shelton RC, Winn S, Ekhatore N, Loosen PT. The effects of antidepressants on the thyroid axis in depression. Biol Psychiatry. 1993;33:120–126. doi: 10.1016/0006-3223(93)90311-Z. [DOI] [PubMed] [Google Scholar]
- 79.Duval F, Mokrani MC, Crocq MA, et al. Effect of antidepressant medication on morning and evening thyroid function tests during a major depressive episode. Arch Gen Psychiatry. 1996;53:833–840. doi: 10.1001/archpsyc.1996.01830090081012. [DOI] [PubMed] [Google Scholar]
- 80.Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci. 1996;16:2365–2372. doi: 10.1523/JNEUROSCI.16-07-02365.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Wallace TL, Stellitano KE, Neve RL, Duman RS. Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety. Biol Psychiatry. 2004;56:151–160. doi: 10.1016/j.biopsych.2004.04.010. [DOI] [PubMed] [Google Scholar]
- 82.Shimizu E, Hashimoto K, Okamura N, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54:70–75. doi: 10.1016/S0006-3223(03)00181-1. [DOI] [PubMed] [Google Scholar]
- 83.Duman RS. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med. 2004;5:11–25. doi: 10.1385/NMM:5:1:011. [DOI] [PubMed] [Google Scholar]
- 84.Coppell AL, Pei Q, Zetterstrom TS. Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology. 2003;44:903–910. doi: 10.1016/S0028-3908(03)00077-7. [DOI] [PubMed] [Google Scholar]
- 85.Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JA. cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci. 2002;22:3262–3268. doi: 10.1523/JNEUROSCI.22-08-03262.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Pullar IA, Boot JR, Broadmore RJ. The role of the 5-HT1D receptor as a presynaptic autoreceptor in the guinea pig. Eur J Pharmacol. 2004;493:85–93. doi: 10.1016/j.ejphar.2004.04.029. [DOI] [PubMed] [Google Scholar]
- 87.Young AH, Gallagher P, Watson S, Del-Estal D, Owen BM, Nicol Ferrier I. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology. 2004;29:1538–1545. doi: 10.1038/sj.npp.1300471. [DOI] [PubMed] [Google Scholar]
- 88.Bao AM, Hestiantoro A, Van Someren EJ, Swaab DF, Zhou JN. Colocalization of corticotropin-releasing hormone and oestrogen receptor-{alpha} in the paraventricular nucleus of the hypothalamus in mood disorders.Brain. 2005. [DOI] [PubMed]
- 89.Dableh LJ, Yashpal K, Rochford J, Henry JL. Antidepressant-like effects of neurokin receptor antagonists in the forced swim test in the rat. Eur J Pharmacol. 2005;507:99–105. doi: 10.1016/j.ejphar.2004.11.024. [DOI] [PMC free article] [PubMed] [Google Scholar]