Skip to main content
AAPS PharmSci logoLink to AAPS PharmSci
. 2003 Nov 5;5(4):41–48. doi: 10.1208/ps050428

Hydroxyzine from topical phospholipid liposomal formulations: Evaluation of peripheral antihistaminic activity and systemic absorption in a rabbit model

Abeer A W Elzainy 1,, Xiaochen Gu 1, F Estelle R Simons 2, Keith J Simons 1,2,
PMCID: PMC2750990  PMID: 15198516

Abstract

Hydroxyzine, an effective but sedating H1-antihistamine is given orally to treat allergic skin disorders. This study was performed to assess the peripheral H1-antihistaminic activity and extent of systemic absorption of hydroxyzine from liposomes applied to the skin. Using L-α-phosphatidylcholine (PC), small unilamellar vesicles (SUVs) and multilamellar vesicles (MLVs) containing hydroxyzine were prepared. Hydroxyzine in Glaxal Base (GB) was used as the control. Using a randomized, crossover design, each formulation, containing 10 mg of hydroxyzine, was applied to the shaved backs of 6 rabbits (3.08±0.05 kg). Histamine-induced wheal tests and blood sampling were performed at designated time intervals up to 24 hours. Compared with baseline, hydroxyzine from all formulations significantly suppressed histamine-induced wheal formation by 75% to 95% for up to 24 hours. Mean maximum suppression, 85% to 94%, occurred from 2 to 6 hours, with no differences among the formulations. The areas of plasma hydroxyzine concentration versus time area under the curve (AUCs) from PC-SUV and PC-MLV, 80.1±20.8 and 78.4±33.9 ng/mL/h, respectively, were lower than that from GB, 492±141 ng/mL/h (P<.05) over 24 hours. Plasma concentrations of cetirizine arising in-vivo as the active metabolite of hydroxyzine, from PC-SUV, PC-MLV, and GB, were similar with AUCs of 765±50, 1035±202, and 957±227 ng/mL/h, respectively (P<.05). Only 0.02% to 0.06% of the initial hydroxyzine dose remained on the skin after 24 hours. In this model, hydroxyzine from SUV and MLV had excellent topical H1-antihistaminic activity, and minimal systemic exposure occurred. Cetirizine formed in-vivo contributed to some of H1-antihistaminic activity.

Keywords: hydroxyzine, L-α-phosphatidylcholine, liposomes, antihistamine, skin, rabbit

References

  • 1.Simons FER. H1-receptor antagonists: safety issues. Ann Allergy Asthma Immunol. 1999;83:481–488. doi: 10.1016/s1081-1206(10)62855-4. [DOI] [PubMed] [Google Scholar]
  • 2.Reynolds JEF. Martindale the Extra Pharmacopoeia. 30th ed. London, UK: The Pharmaceutical Press; 1993. [Google Scholar]
  • 3.Maghraby GMM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm. 2000;196:63–74. doi: 10.1016/S0378-5173(99)00441-X. [DOI] [PubMed] [Google Scholar]
  • 4.Ganesan MG, Weiner ND, Flynn GL, Ho NFH. Influence of liposomal drug entrapment on percutaneous absorption. Int J Pharm. 1984;20:139–154. doi: 10.1016/0378-5173(84)90225-4. [DOI] [Google Scholar]
  • 5.Niemiec SM, Latta JM, Ramachandran C, Weiner ND, Roessler BJ. Perifollicular transgenic expression of human Interleukin-1 receptor antagonist protein following topical application of novel liposome-plasmid DNA formulation in-vivo. J Pharm Sci. 1997;86:701–708. doi: 10.1021/js9604873. [DOI] [PubMed] [Google Scholar]
  • 6.Fleisher D, Niemiec SM, Oh CK, Hu Z, Ramachandran C, Weiner N. Topical delivery of growth hormone releasing peptide using liposomal systems: an in-vitro study using hairless mouse skin. Life Sci. 1995;57:1293–1297. doi: 10.1016/0024-3205(95)02086-X. [DOI] [PubMed] [Google Scholar]
  • 7.Egbaria K, Ramachandran C, Kittayanond D, Weiner N. Topical delivery of liposomally encapsulated interferon evaluated by invitro diffusion studies. Antimicrob Agents Chemother. 1990;34:107–110. doi: 10.1128/aac.34.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Mezei M. Liposomes in the topical application of drugs: a review. In: Gregoriadis G, editor. Liposomes as Drug Carriers, Recent Trends and Progress. New York, NY: John Wiley and Sons; 1988. [Google Scholar]
  • 19.Krowczynski L, Stozek T. Liposomes as drug-carriers in the transdermal therapy. Pharmazie. 1984;39:627–629. [PubMed] [Google Scholar]
  • 10.Patel HM. Liposomes as a controlled-release system. Biochem Soc Trans. 1985;13:513–516. doi: 10.1042/bst0130513. [DOI] [PubMed] [Google Scholar]
  • 11.Price CI, Horton JW, Baxter CR. Liposome delivery of aminoglycosides in burn wounds. Surg Gynecol Obstet. 1992;174:414–418. [PubMed] [Google Scholar]
  • 12.Price CI, Horton JW, Baxter CR. Topical liposomal delivery of antibiotics in soft tissue infection. J Surg Res. 1990;49:174–178. doi: 10.1016/0022-4804(90)90258-4. [DOI] [PubMed] [Google Scholar]
  • 13.Vyas SP, Singh R, Asati RK. Liposomally encapsulated diclofenac for sonophoresis induced systemic delivery. J Microencapsul. 1995;12:149–154. doi: 10.3109/02652049509015285. [DOI] [PubMed] [Google Scholar]
  • 14.El-Ridy MS, Khalil RM. Free versus liposome-encapsulated lignocaine hydrochloride topical applications. Pharmazie. 1999;54:682–684. [PubMed] [Google Scholar]
  • 15.Martin GP. Phospholipids as skin penetration enhancers. In: Walters KA, Hadgraft J, editors. Pharmaceutical Skin Penetration Enhancement. New York, NY: Marcel Dekker; 1993. pp. 57–60. [Google Scholar]
  • 16.Yarosh DB. Topical application of liposomes. J Photochem Photobiol B. 1990;6:445–449. doi: 10.1016/1011-1344(90)85118-G. [DOI] [PubMed] [Google Scholar]
  • 17.Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973;298:1015–1019. doi: 10.1016/0005-2736(73)90408-2. [DOI] [PubMed] [Google Scholar]
  • 18.Nagarsenker MS, Londhe VY, Nadkarni GD. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. Int J Pharm. 1999;190:63–71. doi: 10.1016/S0378-5173(99)00265-3. [DOI] [PubMed] [Google Scholar]
  • 19.Elzainy AAW, Gu X, Simons FER, Simons KJ. Effect of different phospholipids on the stability of liposomal formulations containing hydroxyzine. AAPS Pharm Sci. 2002;4:4–4. [Google Scholar]
  • 20.Olfert ED, Cross BM, Mcwilliam AA. Guide to the Care and Use of Experimental Animals. Ottawa ON, Canada: Canadian Council on Animal Care; 1993. [Google Scholar]
  • 21.Simons FER, Simons KJ, Frith EM. The pharmacokinetics and antihistaminic effects of the H1-receptor antagonist hydroxyzine. J Allergy Clin Immunol. 1984;73:69–75. doi: 10.1016/0091-6749(84)90486-X. [DOI] [PubMed] [Google Scholar]
  • 22.Watson WTA, Simons KJ, Chen XY, Simons FER. Cetirizine: a pharmacokinetics and pharmacodynamic evaluation in children with seasonal allergic rhinitis. J Allergy Clin Immunol. 1989;84:457–464. doi: 10.1016/0091-6749(89)90358-8. [DOI] [PubMed] [Google Scholar]
  • 23.Simons FER, Silver NA, Gu X, Simons KJ. Skin concentrations of H1-receptor antagonists. J Allergy Clin Immunol. 2001;107:526–530. doi: 10.1067/mai.2001.113080. [DOI] [PubMed] [Google Scholar]
  • 24.Balen GPV, Caron G, Ermondi G, Pagliara A, Grandi T, Bouchard G, Fruttero R, Carrupt P-A, Testa B. Lipophilicity behaviour of the zwitterionic antihistamine cetirizine in phosphatidylcholine liposomes/water systems. Pharm Res. 2001;18:694–701. doi: 10.1023/A:1011049830615. [DOI] [PubMed] [Google Scholar]
  • 25.Patel HM, Moghimi SM. Liposomes and the skin permeability barrier. In: Gregoriadis G, Florence AT, Patel HM, editors. Liposomes in Drug Delivery. Chur, Switzerland: Harwood Academic Publishers; 1993. pp. 142–146. [Google Scholar]
  • 26.Mezei M. Liposomes and the skin. In: Gregoriadis G, Florence AT, Patel HM, editors. Liposomes in Drug Delivery. Chur, Switzerland: Harwood Academic Publishers; 1993. pp. 125–135. [Google Scholar]
  • 27.Simons FER, Silver NA, Gu X, Simons KJ. Clinical pharmacology of H1-antihistamines in the skin. J Allergy Clin Immunol. 2002;110:777–783. doi: 10.1067/mai.2002.129123. [DOI] [PubMed] [Google Scholar]
  • 28.Rihoux JP. Therapeutic index of H1-antihistamines: example of cetirizine. Ann. Allergy Asthma Immunol. 1999;83:489–491. doi: 10.1016/S1081-1206(10)62856-6. [DOI] [PubMed] [Google Scholar]
  • 29.Foldvari M, Gesztes A, Mezei M. Dernal drug delivery by liposome encap sulation: clinical and electron microscopic studies. J Microencapsul. 1990;7:479–489. doi: 10.3109/02652049009040470. [DOI] [PubMed] [Google Scholar]
  • 30.Bashir SJ, Maibach HI. Cutaneous metabolism during in-vitro percutaneous absorption. In: Bronaugh RL, Kraeling MEK, Yourick J, Hood HL, editors. Topical Absorption of Dermatological Products. New York, NY: Marcel Dekker; 2002. pp. 77–81. [Google Scholar]
  • 31.Wohlarb W, Lasch J. Penetration kinetics of liposomal hydrocortisone in human skin. Dermatologica. 1987;174:18–22. doi: 10.1159/000248974. [DOI] [PubMed] [Google Scholar]
  • 32.Wohlarb W, Lasch J. The effect of liposomal incorporation of topically applied hydrocortisone on its serum concentration and urinary excretion. Dermatol Monatsschr. 1989;175:348–352. [PubMed] [Google Scholar]
  • 33.Mezei M, Gulasekharam V. Liposomes: a selective drug delivery system for the topical route of administration. 1. Lotion dosage form. Life Sci. 1980;26:1473–1477. doi: 10.1016/0024-3205(80)90268-4. [DOI] [PubMed] [Google Scholar]
  • 34.Harsanyi BB, Hilchie JC, Mezei M. Liposomes as drug carriers for oral ulcers. J Dent Res. 1986;65:1133–1141. doi: 10.1177/00220345860650090501. [DOI] [PubMed] [Google Scholar]
  • 35.Foong WC, Harsany BB, Mezei M. Biodisposition and histological evaluation of topically applied retinoic acid in liposomal, cream and gel dosage forms. In: Hanin I, Pepeu G, editors. Phospholipids. New York, NY: Plenum Press; 1990. pp. 279–282. [Google Scholar]

Articles from AAPS PharmSci are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES