Skip to main content
AAPS PharmSci logoLink to AAPS PharmSci
. 2000 Jun 7;2(2):76–97. doi: 10.1208/ps020216

Human proton/oligopeptide transporter (POT) genes: Identification of putative human genes using bioinformatics

Christopher W Botka 1,, Thomas W Wittig 1, Richard C Graul 1, Carsten Uhd Nielsen 1, Wolfgang Sadée 1,, Kazutaka Higaki 2, Gordon L Amidon 2
PMCID: PMC2751030  PMID: 11741232

Abstract

Purpose: The proton-dependent oligopeptide transporters (POT) gene family currently consists of ∼70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat histidine/peptide transporter (rPHT1). Because the Candida elegans genome contains five putative POT genes, we searched the available protein and nucleic acid databases for additional mammalian/human POT genes, using iterative BLAST runs and the human expressed sequence tags (EST) database. The apparent human orthologue of rPHT1 (expression largely confined to rat brain and retina) was represented by numerous ESTs originating from many tissues. Assembly of these ESTs resulted in a contiguous sequence covering ∼95% of the suspected coding region. The contig sequences and analyses revealed the presence of several possible splice variants of hPHT1. A second closely related human EST-contig displayed high identity to a recently cloned mouse cDNA encoding cyclic adenosine monophosphate (cAMP)-inducible 1 protein (gi:4580995). This contig served to identify a PAC clone containing deduced exons and introns of the likely human orthologue (termed hPHT2). Northern analyses with EST clones indicated that hPHT1 is primarily expressed in skeletal muscle and spleen, whereas hPHT2 is found in spleen, placenta, lung, leukocytes, and heart. These results suggest considerable complexity of the human POT gene family, with relevance to the absorption and distribution of cephalosporins and other peptoid drugs.

Footnotes

published June 7, 2000

References

  • 1.Yang CY, Dantzig AH, Pidgeon C. Intestinal peptide transport systems and oral drug availability. Pharm Res. 1999;16:1331–1343. doi: 10.1023/A:1018982505021. [DOI] [PubMed] [Google Scholar]
  • 2.Dantzig AH, Bergin L. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim Biophys Acta. 1990;1027:211–217. doi: 10.1016/0005-2736(90)90309-C. [DOI] [PubMed] [Google Scholar]
  • 3.Matsumoto S, Saito H, Inui K. Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco-2: interaction with dipeptide transport systems in apical and basolateral membranes. J Pharmacol Exp Ther. 1994;270:498–504. [PubMed] [Google Scholar]
  • 4.Wenzel U, Gebert I, Weintraut H, Weber WM, Clauss W, Daniel H. Transport characteristics of differently charged cephalosporin antibiotics in oocytes expressing the cloned intestinal peptide transporter PepT1 and in human intestinal Caco-2 cells. J Pharmacol Exp Ther. 1996;277:831–839. [PubMed] [Google Scholar]
  • 5.Kramer W, Girbig F, Gutjahr U, Kleemann HW, Leipe I, Urbach H, Wagner A. Interaction of renin inhibitors with the intestinal uptake system for oligopeptides and beta-lactam antibiotics. Biochim Biophys Acta. 1990;1027:25–30. doi: 10.1016/0005-2736(90)90043-N. [DOI] [PubMed] [Google Scholar]
  • 6.Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, Singh SK, Boron WF, Hediger MA. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994;368:563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
  • 7.Thwaites DT, Brown CD, Hirst BH, Simmons NL. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H+-coupled carriers at both apical and basal membranes. J Biol Chem. 1993;268:7640–7642. [PubMed] [Google Scholar]
  • 8.Graul RC, Sadée W. Sequence Alignments of the H+-Dependent Oligopeptide Transporter Family. Inferences on Structure and Function of the Intestinal PET1 Transporter. Pharm Res. 1997;14:388–400. doi: 10.1023/A:1012070726480. [DOI] [PubMed] [Google Scholar]
  • 9.Fei YJ, Ganapathy V, Leibach FH. Molecular and structural features of the proton-coupled oligopeptide transporter superfamily. Prog Nucleic Acid Res Mol Biol. 1998;58:239–261. doi: 10.1016/S0079-6603(08)60038-0. [DOI] [PubMed] [Google Scholar]
  • 10.Paulsen IT, Skurray RA. The POT family of transport proteins. Trends Biochem Sci. 1994;19:404–404. doi: 10.1016/0968-0004(94)90087-6. [DOI] [PubMed] [Google Scholar]
  • 11.Steiner HY, Naider F, Becker JM. The PTR family: A new group of peptide transporters. Mol Microbiol. 1995;16:825–834. doi: 10.1111/j.1365-2958.1995.tb02310.x. [DOI] [PubMed] [Google Scholar]
  • 12.Covitz KM, Amidon GL, Sadée W. Membrane topology of the human dipeptide transporter, hPEPT1, determined by epitope insertions. Biochemistry. 1998;37:15214–15221. doi: 10.1021/bi981128k. [DOI] [PubMed] [Google Scholar]
  • 13.Liu W, Liang R, Ramamoorthy S, Fei YJ, Ganapathy ME, Hediger MA, Ganapathy V, Leibach FH. Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim Biophys Acta. 1995;1235:461–466. doi: 10.1016/0005-2736(95)80036-F. [DOI] [PubMed] [Google Scholar]
  • 14.Liang R, Fei YJ, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, Leibach FH. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem. 1995;270:6456–6463. doi: 10.1074/jbc.270.12.6456. [DOI] [PubMed] [Google Scholar]
  • 15.Han H, Frueh RLA, Rie JJ, Covitz KM, Smith PL, Lee C-P, Sadée W, Amidon GL. 5′-Amino acid esters of antiviral nucleosides, acyclovir and AZT, are absorbed by the intestinal hPEPT1 peptide transporter. Pharm Res. 1998;15:1154–1159. doi: 10.1023/A:1011919319810. [DOI] [PubMed] [Google Scholar]
  • 16.Yamashita T, Shimada S, Guo W, Sato K, Kohmura E, Hayakawa T, Takagi T, Tohyama M. Cloning and functional expression of a brain peptide/histidine transporter. J Biol Chem. 1997;272:10205–10211. doi: 10.1074/jbc.272.17.11408. [DOI] [PubMed] [Google Scholar]
  • 17.Nakanishi T, Tamai I, Sai Y, Sasaki T, Tsuji A. Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080. Cancer Res. 1997;57:4118–4122. [PubMed] [Google Scholar]
  • 18.Graul RC, Sadée W. Evolutionary relationships among proteins probed by an iterative neighborhood cluster analysis (INCA): Alignment of bacteriorhodopsins with the yeast sequence YRO2. Pharm Res. 1997;14:1533–1541. doi: 10.1023/A:1012166015402. [DOI] [PubMed] [Google Scholar]
  • 19.Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9:868–877. doi: 10.1101/gr.9.9.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of proteins. J Mol Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  • 22.Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147:195–197. doi: 10.1016/0022-2836(81)90087-5. [DOI] [PubMed] [Google Scholar]
  • 23.Pearson WR. Searching protein sequence libraries: Comparison of the sensitivity and selectivity of the Smith-Waterman algorithms. Genomics. 1991;11:635–650. doi: 10.1016/0888-7543(91)90071-L. [DOI] [PubMed] [Google Scholar]
  • 24.Sadée W, Graul RC, Lee AY. Classification of membrane transporters. In: Amidon GL, Sadée W, editors. Membrane Transporters as Drug Targets. New York: Plenum Press; 1999. pp. 29–58. [Google Scholar]
  • 25.Saito H, Motohashi H, Mukai M, Inui K. Cloning and characterization of a pH-sensing regulatory factor that modulates transport activity of the human H+/peptide cotransporter, PEPT1. Biochem Biophys Res Commun. 1997;237:577–582. doi: 10.1006/bbrc.1997.7129. [DOI] [PubMed] [Google Scholar]
  • 26.Miayata M, Takahashi Y, Zheng P, Smith HD. Identification of three genes markedly indiced by cAMP treatment of RAW264 cells. Biochem Genet Metab. submitted.
  • 27.Chulavatnatol S, Charles B. Antagonism of amoxycillin absorption in man following oral administration with glycyl peptides. Europ J Pharmacol. 1994;40:374–378. [Google Scholar]
  • 28.Gonzales DE, Covitz KM, Sadée W, Mrsny RJ. An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines AsPc-1 and Capan-2. Cancer Res. 1998;58:519–525. [PubMed] [Google Scholar]

Articles from AAPS PharmSci are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES