Skip to main content
AAPS PharmSci logoLink to AAPS PharmSci
. 2001 Nov 21;3(4):30–43. doi: 10.1208/ps030429

Allometric scaling of xenobiotic clearance: Uncertainty versus universality

Ten-Min Hu 1,, William L Hayton 1,
PMCID: PMC2751218  PMID: 12049492

Abstract

Statistical analysis and Monte Carlo simulation were used to characterize uncertainty in the allometric exponent (b) of xenobiotic clearance (CL). CL values for 115 xenobiotics were from published studies in which at least 3 species were used for the purpose of interspecies comparison of pharmacokinetics. The b value for each xenobiotic was calculated along with its confidence interval (CI). For 24 xenobiotics (21%), there was no correlation between log CL and log body weight. For the other 91 cases, the mean±standard deviation of the b values was 0.74±0.16; range: 0.29 to 1.2. Most (81%) of these individual b values did not differ from either 0.67 or 0.75 at P=0.05. When CL values for the subset of 91 substances were normalized to a common body weight coefficient (a), the b value for the 460 adjusted CL values was 0.74; the 99% CI was 0.71 to 0.76, which excluded 0.67. Monte Carlo simulation indicated that the wide range of observed b values could have resulted from random variability in CL values determined in a limited number of species, even though the underlying b value was 0.75. From the normalized CL values, 4 xenobiotic subgroups were examined: those that were (i) protein, and those that were (ii) eliminated mainly by renal excretion, (iii) by metabolism, or (iv) by renal excretion and metabolism combined. All subgroups except (ii) showed a b value not different from 0.75. The b value for the renal excretion subgroup (21 xenobiotics, 105 CL values) was 0.65, which differed from 0.75 but not from 0.67.

Keywords: allometric scaling, body-weight exponent, clearance, metabolism, metabolic rate, pharmacokinetics, Monte Carlo simulation, power law

References

  • 1.Schmidt-Nielsen K. Scaling: Why Is Animal Size So Important? Princeton, NJ: Cambridge University Press; 1983. [Google Scholar]
  • 2.Calder WA. Size, Function and Life History. Cambridge, MA: Harvard University Press; 1984. [Google Scholar]
  • 3.West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276:122–126. doi: 10.1126/science.276.5309.122. [DOI] [PubMed] [Google Scholar]
  • 4.West GB, Brown JH, Enquist BJ. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science. 1999;284:1677–1679. doi: 10.1126/science.284.5420.1677. [DOI] [PubMed] [Google Scholar]
  • 5.Kleiber M. Body size and metabolism. Hilgardia. 1932;6:315–353. [Google Scholar]
  • 6.Heusner AA. Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber's equation a statistical artifact? Respir Physiol. 1982;48:1–12. doi: 10.1016/0034-5687(82)90046-9. [DOI] [PubMed] [Google Scholar]
  • 7.Feldman HA, McMahon TA. The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respir Physiol. 1983;52:149–163. doi: 10.1016/0034-5687(83)90002-6. [DOI] [PubMed] [Google Scholar]
  • 8.Banavar JR, Maritan A, Rinaldo A. Size and form in efficient transportation networks. Nature. 1999;399:130–132. doi: 10.1038/20144. [DOI] [PubMed] [Google Scholar]
  • 9.Dodds PS, Rothman DH, Weitz JS. Re-examination of the “3/4-law” of metabolism. J Theor Biol. 2001;209:9–27. doi: 10.1006/jtbi.2000.2238. [DOI] [PubMed] [Google Scholar]
  • 10.Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokin Biopharm. 1982;10:201–227. doi: 10.1007/BF01062336. [DOI] [PubMed] [Google Scholar]
  • 11.Sawada Y, Hanano M, Sugiyama Y, Iga T. Prediction of disposition of beta-lactam antibiotics in humans from pharmacokinetic parameters in manimals. J Pharmacokin Biopharm. 1984;12:241–261. doi: 10.1007/BF01061720. [DOI] [PubMed] [Google Scholar]
  • 12.Mordenti J. Man versus beast: Pharmacokinetic scaling in mammals. J Pharm Sci. 1986;75:1028–1040. doi: 10.1002/jps.2600751104. [DOI] [PubMed] [Google Scholar]
  • 13.Mahmood I, Balian JD. Interspecies scaling: Prediction clearance of drugs in humans. Three different approaches. Xenobiotica. 1996;26:887–895. doi: 10.3109/00498259609052491. [DOI] [PubMed] [Google Scholar]
  • 14.Feng MR, Lou X, Brown RR, Hutchaleelaha A. Allometric pharmacokinetic scaling: Towards the prediction of human oral pharmacokinetics. Pharm Res. 2000;17:410–418. doi: 10.1023/a:1007520818956. [DOI] [PubMed] [Google Scholar]
  • 15.Mahmood I. Interspecies scaling of renally secreted drugs. Life Sci. 1998;63:2365–2371. doi: 10.1016/s0024-3205(98)00525-6. [DOI] [PubMed] [Google Scholar]
  • 16.McGovren SP, Williams MG, Stewart JC. Interspecies comparison of acivicin pharmacokinetics. Drug Metab Dispo. 1988;16:18–22. [PubMed] [Google Scholar]
  • 17.Brazzell RK, Park YH, Wooldridge CB, et al. Interspecies comparison of the pharmacokinetics of aldose reductase inhibitors. Drug Metab Dispos. 1990;18:435–440. [PubMed] [Google Scholar]
  • 18.Bjorkman S, Redke F. Clearance of fentanyl, alfentanil, methohexitone, thiopentone and ketamine in relation to estimated hepatic blood flow in several animal species: Application to prediction of clearance in man. J Pharm Pharmacol. 2000;52:1065–1074. doi: 10.1211/0022357001774985. [DOI] [PubMed] [Google Scholar]
  • 19.Cherkofsky SC. 1-Aminocyclopropanecarboxylic acid: Mouse to man interspecies pharmacokinetic comparisons and allometric relationships. J Pharm Sci. 1995;84:1231–1235. doi: 10.1002/jps.2600841016. [DOI] [PubMed] [Google Scholar]
  • 20.Robbie G, Chiou WL. Elucidation of human amphotericin B pharmacokinetics: Identification of a new potential factor affecting interspecies pharmacokinetic scaling. Pharm Res. 1998;15:1630–1636. doi: 10.1023/a:1011923704731. [DOI] [PubMed] [Google Scholar]
  • 21.Paxton JW, Kim SN, Whitfield LR. Pharmacokinetic and toxicity scaling of the antitumor agents amsacrine and CI-921, a new analogue, in mice, rats, rabbits, dogs, and humans. Cancer Res. 1990;50:2692–2697. [PubMed] [Google Scholar]
  • 22.GreneLerouge NAM, Bazin-Redureau MI, Debray M, Schermann JM. Interspecies scaling of clearance and volume of distribution for digoxin-specific Fab. Toxicol Appl Pharmacol. 1996;138:84–89. doi: 10.1006/taap.1996.0101. [DOI] [PubMed] [Google Scholar]
  • 23.Lave T, Dupin S, Schmidt C, Chou RC, Jaeck D, Coassolo PH. Integration of in vitro data into allometric scaling to predict hepatic metabolic clearance in man: Application to 10 extensively metabolized drugs. J Pharm Sci. 1997;86:584–590. doi: 10.1021/js960440h. [DOI] [PubMed] [Google Scholar]
  • 24.Bazin-Redureau M, Pepin S, Hong G, Debray M, Scherrmann JM. Interspecies scaling of clearance and volume of distribution for horse antivenom F(ab′)2. Toxicol Appl Pharmacol. 1998;150:295–300. doi: 10.1006/taap.1997.8363. [DOI] [PubMed] [Google Scholar]
  • 25.Lashev LD, Pashov DA, Marinkov TN. Interspecies differences in the pharmacokinetics of kanamycin and apramycin. Vet Res Comm. 1992;16:293–300. doi: 10.1007/BF01839328. [DOI] [PubMed] [Google Scholar]
  • 26.Patel BA, Boudinot FD, Schinazi RF, Gallo JM, Chu CK. Comparative pharmacokinetics and interspecies scaling of 3′-azido-3′-deoxy-thymidine (AZT) in several mammalian species. J Pharmacobio-Dyn. 1990;13:206–211. doi: 10.1248/bpb1978.13.206. [DOI] [PubMed] [Google Scholar]
  • 27.Kurihara A, Naganuma H, Hisaoka M, Tokiwa H, Kawahara Y. Prediction of human pharmacokinetics of panipenem-betamipron, a new carbapenem, from animal data. Antimicrob Ag Chemother. 1992;36:1810–1816. doi: 10.1128/aac.36.9.1810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Mehta SC, Lu DR. Interspecies pharmacokinetic scaling of BSH in mice, rats, rabbits, and humans. Biopharm Drug Dispos. 1995;16:735–744. doi: 10.1002/bdd.2510160904. [DOI] [PubMed] [Google Scholar]
  • 29.Bonati M, Latini R, Tognoni G. Interspecies comparison of in vivo caffeine pharmacokinetics in man, monkey, rabbit, rat, and mouse. Drug Metab Rev. 1984;15:1355–1383. doi: 10.3109/03602538409029964. [DOI] [PubMed] [Google Scholar]
  • 30.Kaye B, Brearley CJ, Cussans NJ, Herron M, Humphrey MJ, Mollatt AR. Formation and pharmacokinetics of the active drug candoxatrilat in mouse, rat, rabbit, dog and man following administration of the produg candoxatril. Xenobiotica. 1997;27:1091–1102. doi: 10.1080/004982597240046. [DOI] [PubMed] [Google Scholar]
  • 31.Mordenti J, Chen SA, Moore JA, Ferraiolo BL, Green JD. Interspecies scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm Res. 1991;8:1351–1359. doi: 10.1023/a:1015836720294. [DOI] [PubMed] [Google Scholar]
  • 32.Sawada Y, Hanano M, Sugiyama Y, Iga T. Prediction of the disposition of β-lactam antibiotics in humans from pharmacokinetic parameters in animals. J Pharmacokinet Biopharm. 1984;12:241–261. doi: 10.1007/BF01061720. [DOI] [PubMed] [Google Scholar]
  • 33.Matsushita H, Suzuki H, Sugiyama Y, et al. Prediction of the pharmacokinetics of cefodizime and cefotetan in humans from pharmacokinetic parameters in animals. J Pharmacobio-Dyn. 1990;13:602–611. doi: 10.1248/bpb1978.13.602. [DOI] [PubMed] [Google Scholar]
  • 34.Mordenti J. Pharmacokinetic scale-up: Accurate prediction of human pharmacokinetic profiles from animal data. J Pharm Sci. 1985;74:1097–1099. doi: 10.1002/jps.2600741017. [DOI] [PubMed] [Google Scholar]
  • 35.Feng MR, Loo J, Wright J. Disposition of the antipsychotic agent CI-1007 in rats, monkeys, dogs, and human cytochrome p450 2D6 extensive metabolizers: Species comparison and allometric scaling. Drug Metab Dispos. 1998;26:982–988. [PubMed] [Google Scholar]
  • 36.Hildebrand M. Inter-species extrapolation of pharmacokinetic data of three prostacyclin-mimetics. Prostaglandins. 1994;48:297–312. doi: 10.1016/0090-6980(94)90030-2. [DOI] [PubMed] [Google Scholar]
  • 37.Ericsson H, Tholander B, Bjorkman JA, Nordlander M, Regardh CG. Pharmacokinetics of new calcium channel antagonist clevidipine in the rat, rabbit, and dog and pharmacokinetic/pharmacodynamic relationship in anesthetized dogs. Drug Metab Dispo. 1999;27:558–564. [PubMed] [Google Scholar]
  • 38.Sangalli L, Bortolotti A, Jiritano L, Bonati M. Cyclosporine pharmacokinetics in rats and interspecies comparison in dogs, rabbits, rats, and humans. Drug Metab Dispo. 1998;16:749–753. [PubMed] [Google Scholar]
  • 39.Kim SH, Kim WB, Lee MG. Interspecies pharmacokinetic scaling of a new carbapenem, DA-1131, in mice, rats, rabbits and dogs, and prediction of human pharmacokinetics. Biopharm Drug Dispos. 1998;19:231–235. doi: 10.1002/(sici)1099-081x(199805)19:4<231::aid-bdd96>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  • 40.Klotz U, Antonin K-H, Bieck PR. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig and rat. J Pharmacol Exp Ther. 1976;199:67–73. [PubMed] [Google Scholar]
  • 41.Kaul S, Daudekar KA, Schilling BE, Barbhaiya RH. Toxicokinetics of 2′,3′-deoxythymidine, stavudine (D4T) Drug Metab Dispos. 1999;27:1–12. [PubMed] [Google Scholar]
  • 42.Sanwald-Ducray P, Dow J. Prediction of the pharmacokinetic parameters of reduced-dolasetron in man using in vitro-in vivo and interspecies allometric scaling. Xenobiotica. 1997;27:189–201. doi: 10.1080/004982597240686. [DOI] [PubMed] [Google Scholar]
  • 43.Kawakami J, Yamamoto K, Sawada Y, Iga T. Prediction of brain delivery of ofloxacin, a new quinolone, in the human from animal data. J Pharmacokinet Biopharm. 1994;22:207–227. doi: 10.1007/BF02353329. [DOI] [PubMed] [Google Scholar]
  • 44.Tsunekawa Y, Hasegawa T, Nadai M, Takagi K, Nabeshima T. Interspecies differences and scaling for the pharmacokinetics of xanthine derivatives. J Pharm Pharmacol. 1992;44:594–599. doi: 10.1111/j.2042-7158.1992.tb05471.x. [DOI] [PubMed] [Google Scholar]
  • 45.Bregante MA, Saez P, Aramayona JJ, et al. Comparative pharmacokinetics of enrofloxacin in mice, rats, rabbits, sheep, and cows. Am J Vet Res. 1999;60:1111–1116. [PubMed] [Google Scholar]
  • 46.Duthu GS. Interspecies correlation of the pharmacokinetics of erythromycin, oleandomycin, and tylosin. J Pharm Sci. 1995;74:943–946. doi: 10.1002/jps.2600740907. [DOI] [PubMed] [Google Scholar]
  • 47.Efthymiopoulos C, Battaglia R, Strolin Benedetti M. Animal pharmacokinetics and interspecies scaling of FCE 22101, a penem antibiotic. J Antimicrob Chemother. 1991;27:517–526. doi: 10.1093/jac/27.4.517. [DOI] [PubMed] [Google Scholar]
  • 48.Jezequel SG. Fluconazole: Interspecies scaling and allometric relationships of pharmacokinetic properties. J Pharm Pharmacol. 1994;46:196–199. doi: 10.1111/j.2042-7158.1994.tb03777.x. [DOI] [PubMed] [Google Scholar]
  • 49.Segre G, Bianchi E, Zanolo G. Pharmacokinetics of flunoxaprofen in rats, dogs, and monkeys. J Pharm Sci. 1988;77:670–673. doi: 10.1002/jps.2600770806. [DOI] [PubMed] [Google Scholar]
  • 50.Khor SP, Amyx H, Davis ST, Nelson D, Baccanari DP, Spector T. Dihydropyrimidine dehydrogenase inactivation and 5-fluorouracil pharmacokinetics: Allometric scaling of animal data, pharmacokinetics and toxicodynamics of 5-fluorouracil in humans. Cancer Chemother Pharmacol. 1997;39:233–238. doi: 10.1007/s002800050566. [DOI] [PubMed] [Google Scholar]
  • 51.Clark B, Smith DA. Metabolism and excretion of a chromone carboxylic acid (FPL 52757) in various animal species. Xenobiotica. 1982;12:147–153. doi: 10.3109/00498258209046789. [DOI] [PubMed] [Google Scholar]
  • 52.Nakajima Y, Hattori K, Shinsei M, et al. Physiologically-based pharmacokinetic analysis of grepafloxacin. Biol Pharm Bull. 2000;23:1077–1083. doi: 10.1248/bpb.23.1077. [DOI] [PubMed] [Google Scholar]
  • 53.Baggot JD. Application of interspecies scaling to the bispyridinium oxime HI-6. Am J Vet Res. 1994;55:689–691. [PubMed] [Google Scholar]
  • 54.Lave T, Levet-Trafit B, Schmitt-Hoffmann AH, et al. Interspecies scaling of interferon disposition and comparison of allometric scaling with concentration-time transformations. J Pharm Sci. 1995;84:1285–1290. doi: 10.1002/jps.2600841106. [DOI] [PubMed] [Google Scholar]
  • 55.Sakai T, Hamada T, Awata N, Watanabe J. Pharmacokinetics of an antiallergic agent, 1-(2-ethoxyethyl)-2-(hexahydro-4-methyl-1H-1,4-diazepin-1-yl)-1H-benzimidazole difumarate (KG-2413) after oral administration: Interspecies differences in rats, guinea pigs and dogs. J Pharmacobio-Dyn. 1989;12:530–536. doi: 10.1248/bpb1978.12.530. [DOI] [PubMed] [Google Scholar]
  • 56.Lave T, Saner A, Coassolo P, Brandt R, Schmitt-Hoffman AH, Chou RC. Animal pharmacokinetics and interspecies scaling from animals to man of lamifiban, a new platelet aggregation inhibitor. J Pharm Pharmacol. 1996;48:573–577. doi: 10.1111/j.2042-7158.1996.tb05976.x. [DOI] [PubMed] [Google Scholar]
  • 57.Richter WF, Gallati H, Schiller CD. Animal pharmacokinetics of the tumor necrosis factor receptor-immunoglobulin fusion protein lenercept and their extrapolation to humans. Drug Metab Dispos. 1999;27:21–25. [PubMed] [Google Scholar]
  • 58.Lapka R, Rejholec V, Sechser T, Peterkova M, Smid M. Interspecies pharmacokinetic scaling of metazosin, a novel alpha-adrenergic antagonist. Biopharm Drug Dispo. 1989;10:581–589. doi: 10.1002/bdd.2510100607. [DOI] [PubMed] [Google Scholar]
  • 59.Ahr H-J, Boberg M, Brendel E, Krause HP, Steinke W. Pharmacokinetics of miglitol: Absorption, distribution, metabolism, and excretion following administration to rats, dogs, and man. Arzneim Forsch. 1997;47:734–745. [PubMed] [Google Scholar]
  • 60.Siefert HM, Domdey-Bette A, Henninger K, Hucke F, Kohlsdorfer C, Stass HH. Pharmacokinetics of the 8-methoxyquinolone, moxifloxacin: A comparison in humans and other mammalian species. J Antimicrob Chemother. 1999;43(Suppl. B):69–76. doi: 10.1093/jac/43.suppl_2.69. [DOI] [PubMed] [Google Scholar]
  • 61.Lave T, Portmann R, Schenker G, et al. Interspecies pharmacokinetic comparisons and allometric scaling of napsagatran, a low molecular weigrobin inhibitor. J Pharm Pharmacol. 1999;51:85–91. doi: 10.1211/0022357991772006. [DOI] [PubMed] [Google Scholar]
  • 62.Higuchi S, Shiobara Y. Comparative pharmacokinetics of nicardipine hydrochloride, a new vasodilator, in various species. Xenobiotica. 1980;10:447–454. doi: 10.3109/00498258009033779. [DOI] [PubMed] [Google Scholar]
  • 63.Mitsuhashi Y, Sugiyama Y, Ozawa S, et al. Prediction of ACNU plasma concentration-time profiles in humans by animal scale-up. Cancer Chemother Pharmacol. 1990;27:20–26. doi: 10.1007/BF00689271. [DOI] [PubMed] [Google Scholar]
  • 64.Yoshimura M, Kojima J, Ito T, Suzuki J. Pharmacokinetics of nipradilol (K-351), a new antihypertensive agent. I. Studies on interspecies variation in laboratory animals. J Pharmacobio-Dyn. 1985;8:738–750. doi: 10.1248/bpb1978.8.738. [DOI] [PubMed] [Google Scholar]
  • 65.Gombar CT, Harrington GW, Polypiw HM, et al. Interspecies scaling of the pharmacokinetics of Nnitrosodimethylamine. Cancer Res. 1990;50:4366–4370. [PubMed] [Google Scholar]
  • 66.Mukai H, Watanabe S, Tsuchida K, Morino A. Pharmacokinetics of NS-49, a phenethylamine class α1A-adrenoceptor agonist, at therapeutic doses in several animal species and interspecies scaling of its pharmacokinetic parameters. Int J Pharm. 1999;186:215–222. doi: 10.1016/s0378-5173(99)00184-2. [DOI] [PubMed] [Google Scholar]
  • 67.Owens SM, Hardwick WC, Blackall D. Phencyclidine pharmacokinetic scaling among species. J Pharmacol Exp Ther. 1987;242:96–101. [PubMed] [Google Scholar]
  • 68.Ishigami M, Saburomaru K, Niino K, et al. Pharmacokinetics of procaterol in the rat, rabbit, and beagle dog. Arzneim Forsch. 1979;29:266–270. [PubMed] [Google Scholar]
  • 69.Khor AP, McCarthy K, DuPont M, Murray K, Timony G. Pharmacokinetics, pharmacodynamics, allometry, and dose selection of rPSGL-Ig for phase I trial. J Pharmacol Exp Ther. 2000;293:618–624. [PubMed] [Google Scholar]
  • 70.Mordenti J, Osaka G, Garcia K, Thomsen K, Licko V, Meng G. Pharmacokinetics and interspecies scaling of recombinant human factor VIII. Toxicol Appl Pharmacol. 1996;136:75–78. doi: 10.1006/taap.1996.0008. [DOI] [PubMed] [Google Scholar]
  • 71.Coassolo P, Fischli W, Clozel J-P, Chou RC. Pharmacokinetics of remikiren, a potent orally active inhibitor of human renin, in rat, dog, and primates. Xenobiotica. 1996;26:333–345. doi: 10.3109/00498259609046712. [DOI] [PubMed] [Google Scholar]
  • 72.Widman M, Nilsson LB, Bryske B, Lundstrom J. Disposition of remoxipride in different species. Arzneim Forsch. 1993;43:287–297. [PubMed] [Google Scholar]
  • 73.Lashev L, Pashov D, Kanelov I. Species specific pharmacokinetics of rolitetracycline. J Vet Med A. 1995;42:201–208. doi: 10.1111/j.1439-0442.1995.tb00371.x. [DOI] [PubMed] [Google Scholar]
  • 74.Herault JP, Donat F, Barzu T, et al. Pharmacokinetic study of three synthetic AT-binding pentasaccharides in various animal species-extrapolation to humans. Blood Coagul Fibrinol. 1997;8:161–167. doi: 10.1097/00001721-199704000-00002. [DOI] [PubMed] [Google Scholar]
  • 75.Ward KW, Azzarano LM, Bondinell WE, et al. Preclinical pharmacokinetics and interspecies scaling of a novel vitronectin receptor antagonist. Drug Metab Dispos. 1999;27:1232–1241. [PubMed] [Google Scholar]
  • 76.Lin C, Gupta S, Loebenberg D, Cayen MN. Pharmacokinetics of an everninomicin (SCH 27899) in mice, rats, rabbits, and cynomolgus monkeys following intravenous administration. Antimicrob Ag Chemother. 2000;44:916–919. doi: 10.1128/aac.44.4.916-919.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Chung M, Radwanski E, Loebenberg D, et al. Interspecies pharmacokinetic scaling of Sch 34343. J Antimicrob Chemother. 1985;15(Suppl. C):227–233. doi: 10.1093/jac/15.suppl_c.227. [DOI] [PubMed] [Google Scholar]
  • 78.Hinderling PH, Dilea C, Koziol T, Millington G. Comparative kinetics of sematilide in four species. Drug Metab Dispo. 1993;21:662–669. [PubMed] [Google Scholar]
  • 79.Walker DK, Ackland MJ, James GC, et al. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog, and man. Xenobiotica. 1999;29:297–310. doi: 10.1080/004982599238687. [DOI] [PubMed] [Google Scholar]
  • 80.Brocks DR, Freed MI, Martin DE, et al. Interspecies pharmacokinetics of a novel hematoregulatory peptide (SK&F 107647) in rats, dogs, and oncologic patients. Pharm Res. 1996;13:794–797. doi: 10.1023/a:1016020221300. [DOI] [PubMed] [Google Scholar]
  • 81.Cosson VF, Fuseau E, Efthymiopoulos C, Bye A. Mixed effect modeling of sumatriptan pharmacokinetics during drug development. I: Interspecies allometric scaling. J Pharmacokin Biopharm. 1997;25:149–167. doi: 10.1023/a:1025728028890. [DOI] [PubMed] [Google Scholar]
  • 82.Leusch A, Troger W, Greischel A, Roth W. Pharmacokinetics of the M1-agonist talsaclidine in mouse, rat, rabbit, and monkey, and extrapolation to man. Xenobiotica. 2000;30:797–813. doi: 10.1080/00498250050119853. [DOI] [PubMed] [Google Scholar]
  • 83.Hoogdalem EJ, Soeishi Y, Matsushima H, Higuchi S. Disposition of the selective α1A-adrenoceptor antagonist tamsulosin in humans: Comparison with data from interspecies scaling. J Pharm Sci. 1997;86:1156–1161. doi: 10.1021/js960303k. [DOI] [PubMed] [Google Scholar]
  • 84.Cruze CA, Kelm GR, Meredith MP. Interspecies scaling of tebufelone pharmacokinetic data and application to preclinical toxicology. Pharm Res. 1995;12:895–901. doi: 10.1023/a:1016273306956. [DOI] [PubMed] [Google Scholar]
  • 85.Gaspari F, Bonati M. Interspecies metabolism and pharmacokinetic scaling of theophylline disposition. Drug Metab Rev. 1990;22:179–207. doi: 10.3109/03602539009041084. [DOI] [PubMed] [Google Scholar]
  • 86.Davi H, Tronquet C, Calx J, et al. Disposition of tiludronate (Skelid) in animals. Xenobiotica. 1999;29:1017–1031. doi: 10.1080/004982599238083. [DOI] [PubMed] [Google Scholar]
  • 87.Pahlman I, Kankaanranta S, Palmer L. Pharmacokinetics of tolterodine, a muscarinic receptor antagonist, in mouse, rat and dog. Arzneim Forsch. 2001;51:134–144. doi: 10.1055/s-0031-1300015. [DOI] [PubMed] [Google Scholar]
  • 88.Tanaka E, Ishikawa A, Horie T. In vivo and in vitro trimethadione oxidation activity of the liver from various animal species including mouse, hamster, rat, rabbit, dog, monkey and human. Human Exp Toxicol. 1999;18:12–16. doi: 10.1177/096032719901800102. [DOI] [PubMed] [Google Scholar]
  • 89.Izumi T, Enomoto S, Hosiyama K, et al. Prediction of the human pharmacokinetics of troglitazone, a new and extensively metabolized antidiabetic agent, after oral administration, with an animal scale-up approach. J Pharmacol Exp Ther. 1996;277:1630–1641. [PubMed] [Google Scholar]
  • 90.Grindel JM, O'Neil PG, Yorgey KA, et al. The metabolism of zomepirac sodium I. Disposition in laboratory animals and man. Drug Metab Dispo. 1980;8:343–348. [PubMed] [Google Scholar]
  • 91.Singer MA, Morton AR. Mouse to elephant: Biological scaling and Kt/V. Am J Kidney Dis. 2000;35:306–309. doi: 10.1016/s0272-6386(00)70341-6. [DOI] [PubMed] [Google Scholar]
  • 92.Singer MA. Of mice and men and elephants: Metabolic rate sets glomerular filtration rate. Am J Kidney Dis. 2001;37:164–178. doi: 10.1016/s0272-6386(01)80073-1. [DOI] [PubMed] [Google Scholar]
  • 93.Edwards NA. Scaling of renal functions in mammals. Comp Biochem Physiol. 1975;52A:63–66. doi: 10.1016/s0300-9629(75)80128-9. [DOI] [PubMed] [Google Scholar]
  • 94.Hayton WL. Maturation and growth of renal function: Dosing renally cleared drugs in children. AAPS PharmSci. 2000;2(1), article 3. [DOI] [PMC free article] [PubMed]
  • 95.Adolph EF. Quantitative relations in the physiological constituents of mammals. Science. 1949;109:579–585. doi: 10.1126/science.109.2841.579. [DOI] [PubMed] [Google Scholar]
  • 96.Rubner M. Über den einfluss der körpergrösse auf stoff und kraftwechsel. Z Biol. 1883;19:535–562. [Google Scholar]
  • 97.Heusner A. Energy metabolism and body size. II. Dimensional analysis and energetic non-similarity. Resp Physiol. 1982;48:13–25. doi: 10.1016/0034-5687(82)90047-0. [DOI] [PubMed] [Google Scholar]
  • 98.West GB. The origin of universal scaling laws in biology. Physica A. 1999;263:104–113. [Google Scholar]
  • 99.Murray CD. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci U S A. 1926;12:207–214. doi: 10.1073/pnas.12.3.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Cohn DL. Optimal systems: I. The vascular system. Bull Math Biophys. 1954;16:59–74. [Google Scholar]
  • 101.Cohn DL. Optimal systems: II. The vascular system. Bull Math Biophys. 1955;17:219–227. [Google Scholar]
  • 102.Bonate PL, Howard D. Prospective allometic scaling: Does the emperor have clothes? J Clin Pharmacol. 2000;40:665–670. [PubMed] [Google Scholar]
  • 103.Mahmood I. Critique of prospective allometric scaling: Does the emperor have clothes? J Clin Pharmacol. 2000;40:671–674. doi: 10.1177/00912700022009026. [DOI] [PubMed] [Google Scholar]

Articles from AAPS PharmSci are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES