Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2004 Dec 1;6(4):23–35. doi: 10.1208/aapsj060430

The role of halogen substitution in classical cannabinoids: A CB1 pharmacophore model

Spyros P Nikas 1, Jolanta Grzybowska 1, Demetris P Papahatjis 2, Avgui Charalambous 1, Ali R Banijamali 1,3, Ravi Chari 1, Pusheng Fan 1, Therapia Kourouli 2, Sonyuan Lin 1, Albert J Nitowski 3, Gilbert Marciniak 1, Yan Guo 1, Xiuyan Li 1, Chia-Lin J Wang 4, Alexandros Makriyannis 1,
PMCID: PMC2751226  PMID: 15760095

Abstract

The presence of halogens within the classical cannabinoid structure leads to large variations in the compounds' potencies and affinities for the CB1 receptors. To explore the structure activity relationships within this class of analogs we have used a series of halogen-substituted (−)-Δ8-tetrahydrocannabinol analogs and compared their affinities for the CB1 cannabinoid receptor. Our results indicate that halogen substitution at the end-carbon of the side chain leads to an enhancement in affinity with the bulkier halogens (Br, I) producing the largest effects. Conversely, 2-iodo substitution on the phenolic ring leads to a 2-fold reduction in affinity while iodo-substitution in the C1'-position of the side chain lowers the compound's affinity for CB1 by more than 8-fold. The pharmacophoric requirements resulting from halogen-substitution are explored using computer modeling methods.

Keywords: tetrahydrocannabinol, halogen substitution, CB1 cannabinoid receptors

Full Text

The Full Text of this article is available as a PDF (324.7 KB).

References

  • 1.Razdan RK. Structure-activity relationships in cannabinoids. Pharmacol Rev. 1986;38:75–149. [PubMed] [Google Scholar]
  • 2.Makriyannis A, Rapaka RS. The molecular basis of cannabinoid activity. Life Sci. 1990;47:2173–2184. doi: 10.1016/0024-3205(90)90147-J. [DOI] [PubMed] [Google Scholar]
  • 3.Pertwee RG. Pharmacology of cannabinoid receptor ligands. Curr Med Chem. 1999;6:635–664. [PubMed] [Google Scholar]
  • 4.Khanolkar AD, Palmer SL, Makriyannis A. Molecular probes for the cannabinoid receptors. Chem Phys Lipids. 2000;108:37–52. doi: 10.1016/S0009-3084(00)00186-9. [DOI] [PubMed] [Google Scholar]
  • 5.Palmer SL, Thakur GA, Makriyannis A. Cannabinergic ligands. Chem Phys Lipids. 2002;121:3–19. doi: 10.1016/S0009-3084(02)00143-3. [DOI] [PubMed] [Google Scholar]
  • 6.Johnson MR, Melvin LS. The discovery of nonclassical cannabinoid analgetics. In: Mechoulam R, editor. Cannabinoids as Therapeutic Agents. Boca Raton, FL: CRC Press; 1986. pp. 121–145. [Google Scholar]
  • 7.Jorapur VS, Duffley RP, Razdan RK. A procedure for the conversion of cannabidiol into 12β-substituted tetrahydrocannabinols (THC's): Synthesis of 12β-hydroxy-Δ8-THC1. Synth, Commun. 1984;14:655–660. doi: 10.1080/00397918408063751. [DOI] [Google Scholar]
  • 8.Meltzer PC, Dalzell HC, Razdan RK. An Improved Synthesis of Cannabinol and Cannabiorcol.Synthesis. 1981:985–987.
  • 9.Weinhardt KK, Razdan RK, Dalzell HC. Hashish: Synthesis of (−)-7-hydroxy-Δ1(6)-tetrahydrocannabinol.Tetrahedron Lett. 1971;4827–4830.
  • 10.Pitt CG, Hobbs DT, Schram H, Twine CE, Williams DL. The synthesis of deuterium, carbon-14 and carrier-free tritium labeled cannabinoids. J Labelled Compd. 1975;11:551–575. doi: 10.1002/jlcr.2590110412. [DOI] [Google Scholar]
  • 11.Pitt CG, Seltzman HH, Setzer SR, Williams DL. The preparation of 5′-iodo-125I-Δ8-THC; A radioligand for the radioimmunoassay of cannabinoids. J Labelled Comp Radiopharm. 1980;17:681–689. doi: 10.1002/jlcr.2580170510. [DOI] [Google Scholar]
  • 12.Schmidt B, Franke I, Witteler F-J, Binder M. Synthesis of cannabinoid model compounds. Helv Chim Acta. 1983;66:2564–2571. doi: 10.1002/hlca.19830660822. [DOI] [Google Scholar]
  • 13.Singer M, Ryan WJ, Saha B, Martin BR, Razdan RK. Potent cyano and carboxamido side-chain analogues of 1′,1′-dimethyl-Δ8-tetrahydrocannabinol. J Med Chem. 1998;41:4400–4407. doi: 10.1021/jm9803875. [DOI] [PubMed] [Google Scholar]
  • 14.Tius MA, Kannangara KGS, Kerr MA, Grace KJS. Halogenated cannabinoid synthesis. Tetrahedron. 1993;49:3291–3304. doi: 10.1016/S0040-4020(01)90158-9. [DOI] [Google Scholar]
  • 15.Tius MA, Bush-Petersen J, Marris AR. Synthesis of a bifunctional cannabinoid ligand.J Chem Soc Chem Commun. 1997;1867–1868.
  • 16.Usami N, Kobana K, Yoshida H, et al. Synthesis and pharmacological activities in mice of halogenated Δ9-tetrahydrocannabinol derivatives. Chem Pharm Bull (Tokyo) 1998;46:1462–1467. doi: 10.1248/cpb.46.1462. [DOI] [PubMed] [Google Scholar]
  • 17.Mavromoustakos T, Yang DP, Charalambous A, Herbette LG, Makriyannis A. Study of the topography of cannabinoids in model membranes using x-ray diffraction. Biochim Biophys Acta. 1990;1024:336–344. doi: 10.1016/0005-2736(90)90363-S. [DOI] [PubMed] [Google Scholar]
  • 18.Charalambous A, Marciniak G, Shine C-Y, et al. PET studies in the primate brain and biodistribution in mice using (−)-5′-18F-Δ8-THC. Pharmacol Biochem Behav. 1991;40:503–507. doi: 10.1016/0091-3057(91)90354-5. [DOI] [PubMed] [Google Scholar]
  • 19.Charalambous A, Lin S, Marciniak G, et al. Pharmacological evaluation of halogenated Δ8-THC analogs. Pharmacol Biochem Behav. 1991;40:509–512. doi: 10.1016/0091-3057(91)90355-6. [DOI] [PubMed] [Google Scholar]
  • 20.Martin BR, Compton DR, Semus SF, et al. Pharmacological evaluation of iodo and nitro analogs of Δ8-THC and Δ9-THC. Pharmacol Biochem Behav. 1993;46:295–301. doi: 10.1016/0091-3057(93)90356-X. [DOI] [PubMed] [Google Scholar]
  • 21.Findlay JA, Kwan D. Metabolites from aScytalidium species. Can J Chem. 1973;51:3299–3301. doi: 10.1139/v73-492. [DOI] [Google Scholar]
  • 22.Arndt F. Diazomethane. Org Synth. 1957;2:165–167. [Google Scholar]
  • 23.Dmowski W, Kolinski RA. Reactions of sulfur tetrafluoride with carboxylic acids: Reactions with alkanecarboxylic, cycloalkanecarboxylic and certain benzenecarboxylic acids. Rocz Chem. 1974;48:1697–1706. [Google Scholar]
  • 24.Charalambous A, Yan G, Houston DB, et al. 5′-Azido-Δ8-THC: A novel photoaffinity label for the cannabinoid receptor. J Med Chem. 1992;35:3076–3079. doi: 10.1021/jm00094a023. [DOI] [PubMed] [Google Scholar]
  • 25.Srebnik M, Mechoulam R, Yona I. Halogenation of phenols and phenyl ethers with potassium halides in the presence of 18-crown-6 on oxidation with m-chloroperbenzoic acid.J Chem Soc. Perkin Trans 1. 1987;1423–1427.
  • 26.Papahatjis DP, Kourouli T, Abadji V, Goutopoulos A, Makriyannis A. Pharmacophoric requirements for cannabinoid side chains: Multiple bond and C1′-substituted Δ8-tetrahydrocannabinols. J Med Chem. 1998;41:1195–1200. doi: 10.1021/jm970277i. [DOI] [PubMed] [Google Scholar]
  • 27.El-Feraly FS, Cheatham SF, McChesney JD. Synthesis and13C nuclear magnetic resonance assignments of cannithrene 1: A cannabis constituent. Can J Chem. 1985;63:2232–2236. doi: 10.1139/v85-367. [DOI] [Google Scholar]
  • 28.Girard M, Moir DB, ApSimon JW. A simple and efficient synthesis of 5′-(2H3)olivetol. Can J Chem. 1987;65:189–190. doi: 10.1139/v87-029. [DOI] [Google Scholar]
  • 29.Brown DW, Mahon MF, Ninan A, Sainsbury M. The synthesis of antioxidants showing selective affinity for low density lipoproteins.J Chem Soc, Perkin Trans 1. 1997;2329–2336.
  • 30.Dodd PR, Hardy JA, Oakley AE, Edwardson JA, Perry EK, Delannoy JP. A Rapid method for preparing synaptosomes comparison with alternative procedures. Brain Res. 1981;226:107–118. doi: 10.1016/0006-8993(81)91086-6. [DOI] [PubMed] [Google Scholar]
  • 31.Cheng YC, Prussoff WH. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (K50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–3102. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  • 32.InsightII/Dros Inf Serv [computer program] COVER (Version 2000.1) Burlington, MA: Accelrys Inc; 2000. [Google Scholar]
  • 33.Xie X-Q, Yang DP, Melvin LS, Makriyannis A. Conformational analysis of the prototype nonclassical cannabinoid CP-47,497, using 2D NMR and computer molecular modeling. J Med Chem. 1994;37:1418–1426. doi: 10.1021/jm00036a006. [DOI] [PubMed] [Google Scholar]
  • 34.SYBYL [computer program]. Version 6.2 St. Louis, MO: TRIPOS Associates Inc; 1995.
  • 35.Khanolkar DA, Abadji V, Lin S, et al. Head group analogues of arachidonylethanolamide, the endogenous cannabinoid ligand. J Med Chem. 1996;39:4515–4519. doi: 10.1021/jm960152y. [DOI] [PubMed] [Google Scholar]
  • 36.Papahatjis DP, Nikas SP, Andreon T, Makriyannis A. Novel 1′,1′-chain substituted Δ8-tetrahydrocannabinols. Bioorg Med Chem Lett. 2002;12:3583–3586. doi: 10.1016/S0960-894X(02)00785-0. [DOI] [PubMed] [Google Scholar]
  • 37.Papahatjis DP, Nikas SP, Kourouli T, et al. Pharmacophoric Requirements for the Cannabinoid Side Chain. Probing the Cannabinoid Receptor Subsite at C1′. J Med Chem. 2003;46:3221–3229. doi: 10.1021/jm020558c. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES