Abstract
A significant bias in parameters, estimated with the proportional odds model using the software NONMEM, has been reported. Typically, this bias occurs with ordered categorical data, when most of the observations are found at one extreme of the possible outcomes. The aim of this study was to assess, through simulations, the performance of the Back-Step Method (BSM), a novel approach for obtaining unbiased estimates when the standard approach provides biased estimates. BSM is an iterative method involving sequential simulation-estimation steps. BSM was compared with the standard approach in the analysis of a 4-category ordered variable using the Laplacian method in NONMEM. The bias in parameter estimates and the accuracy of model predictions were determined for the 2 methods on 3 conditions: (1) a nonskewed distribution of the response with low interindividual variability (IIV), (2) a skewed distribution with low IIV, and (3) a skewed distribution with high IIV. An increase in bias with increasing skewness and IIV was shown in parameters estimated using the standard approach in NON-MEM. BSM performed without appreciable bias in the estimates under the 3 conditions, and the model predictions were in good agreement with the original data. Each BSM estimation represents a random sample of the population; hence, repeating the BSM estimation reduces the imprecision of the parameter estimates. The BSM is an accurate estimation method when the standard modeling approach in NONMEM gives biased estimates.
Keywords: ordered categorical, proportional odds model, bias in parameter estimates, NONMEM, Laplacian, pharmacodynamics
Full Text
The Full Text of this article is available as a PDF (230.1 KB).
References
- 1.Beal SL, Sheiner LB. NONMEM users guides (I-VIII) Hanover, Maryland: Globo Max; 1989. [Google Scholar]
- 2.White DB, Walawander CA, Tung Y, et al. An evaluation of point and interval estimates in population pharmacokinetics using NONMEM analysis. J Pharmacokinet Biopharm. 1991;19:87–112. doi: 10.1007/BF01062194. [DOI] [PubMed] [Google Scholar]
- 3.Bennett JE, Wakefield JC. A comparison of a Bayesian population method with two methods as implemented in commercially available software. J Pharmacokinet Biopharm. 1996;24:403–432. doi: 10.1007/BF02353520. [DOI] [PubMed] [Google Scholar]
- 4.Wakefield J, Walker S. A population approach to initial dose selection. Stat Med. 1997;16:1135–1149. doi: 10.1002/(SICI)1097-0258(19970530)16:10<1135::AID-SIM517>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- 5.Jonsson EN, Wade JR, Karlsson MO. Nonlinearity detection: advantages of nonlinear mixed-effects modeling. The AAPS Journal. 2000;2(3):E32–E32. doi: 10.1208/ps020332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Gupta SK, Sathyan G, Lindemulder EA, et al. Quantitative characterization of therapeutic index: Application of mixed-effects modeling to evaluate oxybutynin dose-efficacy and dose-side effect relationships. Clin Pharmacol Ther. 1999;65:672–684. doi: 10.1016/S0009-9236(99)90089-9. [DOI] [PubMed] [Google Scholar]
- 7.Mandema JW, Stanski DR. Population pharmacodynamic model for ketorolac analgesia. Clin Pharmacol Ther. 1996;60:619–635. doi: 10.1016/S0009-9236(96)90210-6. [DOI] [PubMed] [Google Scholar]
- 8.Mould DR, Holford NH, Schellens JH, et al. Population pharmacokinetic and adverse event analysis of topotecan in patients with solid tumors. Clin Pharmacol Ther. 2002;71:334–348. doi: 10.1067/mcp.2002.123553. [DOI] [PubMed] [Google Scholar]
- 9.Sheiner LB. A new approach to the analysis of analgesic drug trials, illustrated with bromfenac data. Clin Pharmacol Ther. 1994;56:309–322. doi: 10.1038/clpt.1994.142. [DOI] [PubMed] [Google Scholar]
- 10.Jönsson S. Estimation of dosing strategies for individualisation. Uppsala, Sweden: Acta Universitatis Upsaliensis; 2004. [Google Scholar]
- 11.Kowalski KG, McFadyen L, Hutmatcher MM, et al. A Two-Part Mixture Model for Longitudinal Adverse Event Severity Data. J Pharmacokinet Pharmacodyn. 2003;30:315–336. doi: 10.1023/B:JOPA.0000008157.26321.3c. [DOI] [PubMed] [Google Scholar]
- 12.Olsen MK, Schafer JL. A Two-Part Random-Effects Model for Semicontinuous Longitudinal Data. J Am Stat Assoc. 2001;96:730–745. doi: 10.1198/016214501753168389. [DOI] [Google Scholar]
- 13.Hietaniemi J. Comprehensive Perl Archive Network. http://www. cpan.org (October 2003).
- 14.Gelman A, Carlin JB, Stern HS, et al. Bayesian data analysis. London, UK: Chapman & Hall; 1995. [Google Scholar]
- 15.Girard P, Blaschke TF, Kastrissios H, et al. A Markov mixed effect regression model for drug compliance. Stat Med. 1998;17:2313–2333. doi: 10.1002/(SICI)1097-0258(19981030)17:20<2313::AID-SIM935>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
- 16.Yano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001;28:171–192. doi: 10.1023/A:1011555016423. [DOI] [PubMed] [Google Scholar]
- 17.Beal SL. Commentary on significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn. 2002;29:403–410. doi: 10.1023/A:1020909324909. [DOI] [PubMed] [Google Scholar]
- 18.Gisleskog PO, Karlsson MO, Beal SL. Use of prior information to stabilize a population data analysis. J Pharmacokinet Pharmacodyn. 2002;29:473–505. doi: 10.1023/A:1022972420004. [DOI] [PubMed] [Google Scholar]
- 19.Karlsson MO, Jonsson EN, Wiltse CG, et al. Assumption testing in population pharmacokinetic models: illustrated with an analysis of moxonidine data from congestive heart failure patients. J Pharmacokinet Biopharm. 1998;26:207–246. doi: 10.1023/A:1020561807903. [DOI] [PubMed] [Google Scholar]
- 20.Efron B. Better Bootstrap Confidence Intervals. J Am Stat Assoc. 1987;82:171–185. doi: 10.1080/01621459.1987.10478410. [DOI] [Google Scholar]
- 21.Yano I, Beal SL, Sheiner LB. The Need For Mixed-Effects Modeling with Population Dichotomous Data. J Pharmacokinet Pharmacodyn. 2001;28:389–412. doi: 10.1023/a:1011586814601. [DOI] [PubMed] [Google Scholar]
- 22.Wählby U, Jonsson EN, Karlsson MO. Assessment of Actual Significance Levels for Covariate Effects in NONMEM. J Pharmacokinet Pharmacodyn. 2001;28:231–252. doi: 10.1023/A:1011527125570. [DOI] [PubMed] [Google Scholar]