Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2004 Sep 1;6(3):72–80. doi: 10.1208/aapsj060325

Neural retina limits the nonviral gene transfer to retinal pigment epithelium in an in vitro bovine eye model

Leena Pitkänen 1,2,, Jukka Pelkonen 3,4, Marika Ruponen 1, Seppo Rönkkö 1, Arto Urtti 1
PMCID: PMC2751250  PMID: 15760110

Abstract

We investigated the permeation of liposomal and polymeric gene delivery systems through neural retina into retinal pigment epithelium (RPE) and determined the roles of various factors in permeation and subsequent uptake of the delivery systems by RPE. Anterior parts and vitreous of fresh bovine eyes were removed. Retina was left intact or peeled away. Complexes of ethidium monoazide (EMA)-labeled plasmid DNA and cationic carriers (polyethyleneimine, poly-L-lysine, DOTAP liposomes) were pipetted on the retina or RPE. Two hours later the neural retina was removed, if present, and the RPE cells were detached. Contaminants were removed by sucrose centrifugation, and the RPE cells were analyzed for DNA uptake by flow cytometry. Cellular uptake of FITC-dextrans (molecular weight [mw] 20 000, 500 000 and 2 000 000), FITC-poly-L-lysine (mw 20 000), FITC-labeled oligonucleotide (15-mer), and naked EMA-labeled plasmid DNA was determined after pipetting the solutions on the RPE or neural retina. Location of the fluorescent materials in the retina was visualized with fluorescence microscopy. Neural retina decreased the cellular uptake of DNA complexes by an order of magnitude, the uptake of FITC-dextrans slightly, whereas delivery of polycationic FITC-poly-L-lysine to RPE was almost completely inhibibited. Neural retina decreased the cellular uptake of FITC-oligonucleotides, while the uptake of uncomplexed plasmid was always negligible. conclusions from FACS and fluorescence microscopy were similar: delivery of polymeric and liposomal DNA complexes into RPE are limited by the neural retina. This is due to the size and positive charge of the complexes.

Keywords: gene delivery, intravitreal, retina, liposome, polymer

Full Text

The Full Text of this article is available as a PDF (398.0 KB).

References

  • 1.Smelser GK, Ishikawa T, Pei YF. Electronmicroscopic studies of intraretinal spaces diffusion of particulate materials. In: Rohen JW, editor. Structure of the eye. Stuttgart: Schattauer-Verlaug; 1965. pp. 109–120. [Google Scholar]
  • 2.Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space. Exp Eye Res. 1985;40:687–696. doi: 10.1016/0014-4835(85)90138-1. [DOI] [PubMed] [Google Scholar]
  • 3.Kamei M, Misono K, Lewis H. A study of the ability of tissue plasminogen activator to diffuse into the subretinal space after intravitreal injection in rabbits. Am J Ophthalmol. 1999;128:739–746. doi: 10.1016/S0002-9394(99)00239-1. [DOI] [PubMed] [Google Scholar]
  • 4.Hageman GS, Johnson LV. Chondroitin 6-sulfate glycosaminoglycan is a major constituent of primate cone photoreceptor matrix sheaths. Curr Eye Res. 1987;6:639–646. doi: 10.3109/02713688709025225. [DOI] [PubMed] [Google Scholar]
  • 5.Cayouette M, Behn D, Sendtner M, Lachapelle P, Gravel C. Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsivenses of rod photoreceptors in the retinal degeneration slow mouse. J Neurosci. 1998;18:9282–9293. doi: 10.1523/JNEUROSCI.18-22-09282.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Akimoto M, Miyatake S, Kogishi J, et al. Adenovirally expressed basic fibroblast growth factor rescues photoreceptor cells in RCS rats. Invest Ophthalmol Vis Sci. 1999;40:273–279. [PubMed] [Google Scholar]
  • 7.Bennett J, Zeng Y, Bajwa R, Klatt L, Li Y, Maguire AM. Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse. Gene Ther. 1998;5:1156–1164. doi: 10.1038/sj.gt.3300733. [DOI] [PubMed] [Google Scholar]
  • 8.Honda M, Sakamoto T, Ishibashi T, Inomata H, Ueno H. Experimental subretinal neovascularization is inhibited by adenovirus-mediated soluble VEGF/flt-1 receptor gene transfection: a role of VEGF and possible treatment for SR in age-related macular degeneration. Gene Ther. 2000;7:978–985. doi: 10.1038/sj.gt.3301203. [DOI] [PubMed] [Google Scholar]
  • 9.Hauswirth WW, Beaufrere L. Ocular gene therapy: Quo vadis? Invest Ophthalmol Vis Sci. 2000;41:2821–2826. [PubMed] [Google Scholar]
  • 10.Lewin AS, Drenser KA, Hauswirth WW, et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med. 1998;4:967–971. doi: 10.1038/nm0898-967. [DOI] [PubMed] [Google Scholar]
  • 11.Miyoshi H, Takahashi M, Gage F, Verma I. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA. 1997;94:10319–10323. doi: 10.1073/pnas.94.19.10319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Anglade E, Csaky K. Recombinant adenovirus-mediated gene transfer into the adult rat retina. Curr Eye Res. 1998;17:316–321. doi: 10.1076/ceyr.17.3.316.5221. [DOI] [PubMed] [Google Scholar]
  • 13.Li T, Adamian M, Roof D, et al. In vivo transfer of a reporter gene to the retina mediated by an adenoviral vector. Invest Ophthalmol Vis Sci. 1994;35:2543–2549. [PubMed] [Google Scholar]
  • 14.Rolling F, Shen WY, Tabarias H, et al. Evaluation of adeno-associated virus-mediated gene transfer into the rat retina by clinical fluorescence photography. Hum Gene Ther. 1999;10:641–648. doi: 10.1089/10430349950018715. [DOI] [PubMed] [Google Scholar]
  • 15.Spencer B, Agarwala S, Miskulin M, Smith M, Brandt CR. Herpes simplex virus-mediated gene delivery to the rodent visual system. Invest Ophthalmol Vis Sci. 2000;41:1392–1401. [PubMed] [Google Scholar]
  • 16.Galileo DS, Hunter K, Smith SB. Stable and efficient gene transfer into the mutant retinal pigment epithelial cells of the Mitf(vit) mouse using a lentiviral vector. Curr Eye Res. 1999;18:135–142. doi: 10.1076/ceyr.18.2.135.5376. [DOI] [PubMed] [Google Scholar]
  • 17.Ray J, Wolfe JH, Aguirre GD, Haskins ME. Retroviral cDNA transfer to the RPE: stable expression and modification of metabolism. Invest Ophthalmol Vis Sci. 1998;39:1658–1666. [PubMed] [Google Scholar]
  • 18.Lai YK, Rakoczy P, Constable I, Rolling F. Adeno associated virus-mediated gene transfer into human retinal pigment epithelium cells. Aust NZ J Ophthalmol. 1998;26:77–79. doi: 10.1111/j.1442-9071.1998.tb01381.x. [DOI] [PubMed] [Google Scholar]
  • 19.da Cruz L, Robertson T, Hall MO, Constable IJ, Rakoczy PE. Cell polarity, phagocytosis and viral gene transfer in cultured human retinal pigment epithelial cells. Curr Eye Res. 1998;17:668–672. doi: 10.1080/02713689808951241. [DOI] [PubMed] [Google Scholar]
  • 20.Haeseleer F, Imanishi Y, Saperstein D, Palczewski K. Gene transfer mediated by recombinant baculovirus into mouse eye. Invest Ophthalmol Vis Sci. 2001;42:3294–3300. [PMC free article] [PubMed] [Google Scholar]
  • 21.Urtti A, Polansky J, Lui GM, Szoka F. Gene delivery and expression in human retinal pigment epithelial cells: effects of synthetic carriers, serum, extracellular matrix and viral promoters. J Drug Target. 2000;7:413–421. doi: 10.3109/10611860009102216. [DOI] [PubMed] [Google Scholar]
  • 22.Abul-Hassan K, Walmsley R, Boulton M. Optimization of non-viral gene transfer to human primary retinal pigment epithelial cells. Curr Eye Res. 2000;20:361–366. doi: 10.1076/0271-3683(200005)2051-1FT361. [DOI] [PubMed] [Google Scholar]
  • 23.Pitkänen L, Ruponen M, Nieminen J, Urtti A. Vitreous is a barrier in non viral gene transfer by cationic lipids and polymers. Pharm Res. 2003;20:576–583. doi: 10.1023/A:1023238530504. [DOI] [PubMed] [Google Scholar]
  • 24.Boussif O, Lezoualch F, Zanta MD, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethyl-eneimine. Proc Natl Acad Sci USA. 1995;92:7297–7301. doi: 10.1073/pnas.92.16.7297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Mosser DD, Caron AW, Bourget L, Jolicoeur P, Massie B. Use of a dicistronic expression cassette encoding the green fluorescent protein for the screening and selection of cells expressing inducible gene products. Biotechniques. 1997;22:150–161. doi: 10.2144/97221rr02. [DOI] [PubMed] [Google Scholar]
  • 26.Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995;270:18997–19007. doi: 10.1074/jbc.270.32.18997. [DOI] [PubMed] [Google Scholar]
  • 27.Ruponen M, Rönkkö S, Honkakoski P, Pelkonen J, Urtti A. Extracellular glycosaminoglycans modify cellular trafficing of lipoplexes and polyplexes. J Biol Chem. 2001;276:33875–33880. doi: 10.1074/jbc.M011553200. [DOI] [PubMed] [Google Scholar]
  • 28.McGregor GR, Caskey CT. Construction of plasmids that express E. coli beta- galactosidase in mammalian cells. Nucleic Acids Res. 1989;17:2365–2365. doi: 10.1093/nar/17.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Feeney-Burns L, Berman E. Isolation of retinal pigment epithelium. Methods Enzymol. 1982;81:95–110. doi: 10.1016/S0076-6879(82)81018-5. [DOI] [PubMed] [Google Scholar]
  • 30.Hyvönen Z, Plotniece A, Reine I, Checkavichus B, Duburs G, Urtti A. Novel cationic amphiphilic 1,4-dihydropyridine derivatives for DNA delivery. Biochim Biophys Acta. 2000;1509:451–466. doi: 10.1016/S0005-2736(00)00327-8. [DOI] [PubMed] [Google Scholar]
  • 31.Jääskeläinen I, Peltola S, Honkakoski P, Mönkkönen J, Urtti A. A lipid carrier with a membrane active component and a small complex size are required for efficient cellular delivery of anti-sense phosphorothioate oligonucleotides. Eur J Pharm Sci. 2000;10:187–193. doi: 10.1016/S0928-0987(00)00068-3. [DOI] [PubMed] [Google Scholar]
  • 32.Hollyfield JG. Hyaluronan and the functional organization of the interphotoreceptor matrix. Invest Ophthalmol Vis Sci. 1999;40:2767–2769. [PubMed] [Google Scholar]
  • 33.Ruponen M, Ylä-Herttuala S, Urtti A. Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim Biophys Acta. 1999;1415:331–341. doi: 10.1016/S0005-2736(98)00199-0. [DOI] [PubMed] [Google Scholar]
  • 34.Russell SR, Shepherd JD, Hageman GS. Distribution of glycoconjugates in the human retinal internal limiting membrane. Invest Ophthalmol Vis Sci. 1991;32:1986–1995. [PubMed] [Google Scholar]
  • 35.Heegaard S, Jensen OA, Prause JU. Structure and composition of the inner limiting membrane of the retina. SEM on frozen resin-cracked and enzyme-digested retinas of Macaca mulatta. Graefes Arch Clin Exp Ophthalmol. 1986;224:355–360. doi: 10.1007/BF02150029. [DOI] [PubMed] [Google Scholar]
  • 36.Chai L, Morris JE. Distribution of heparan sulfate proteoglycans in embryonic chicken neural retina and isolated inner limiting membrane. Curr Eye Res. 1994;13:669–677. doi: 10.3109/02713689408999903. [DOI] [PubMed] [Google Scholar]
  • 37.Azad RF, Driver VB, Tanaka K, Crooke RM, Anderson KP. Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob Agents Chemother. 1993;37:1945–1954. doi: 10.1128/AAC.37.9.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Jabs DA, Griffiths PD. Fomivirsen for the treatment of cytomegalovirus retinitis. Am J Ophthalmol. 2002;133:552–556. doi: 10.1016/S0002-9394(02)01325-9. [DOI] [PubMed] [Google Scholar]
  • 39.Leeds JM, Henry SP, Truong L, Zutshi A, Levin AA, Kornbrust D. Pharmacokinetics of a potential human cytomegalovirus therapeutic, a phosphorothioate oligonucleotide, after intravitreal injection in the rabbit. Drug Metab Dispos. 1997;25:921–926. [PubMed] [Google Scholar]
  • 40.Leeds JM, Henry SP, Bistner S, Scherrill S, Williams K, Levin AA. Pharmacokinetics of an antisense oligonucleotide injected intravitreally in monkeys. Drug Metab Dispos. 1998;26:670–675. [PubMed] [Google Scholar]
  • 41.Rakoczy PE, Lai MC, Watson M, Seydel U, Constable I. Targeted delivery of an antisense oligonucleotide in the retina: uptake, distribution, stability, and effect. Antisense Nucleic Acid Drug Dev. 1996;6:207–213. doi: 10.1089/oli.1.1996.6.207. [DOI] [PubMed] [Google Scholar]
  • 42.Bennett CF. Antisense oligonucleotides: is the glass half full or half empty? Biochem Pharmacol. 1998;55:9–19. doi: 10.1016/S0006-2952(97)00214-1. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES