Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2005 Oct 19;7(3):E579–E586. doi: 10.1208/aapsj070359

RETRACTED ARTICLE: Recent advances for the treatment of cocaine abuse: Central nervous system immunopharmacotherapy

Tobin J Dickerson 1,2, Kim D Janda 1,2,
PMCID: PMC2751261  PMID: 16353936

Abstract

Cocaine addiction continues to be a major health and societal problem in spite of governmental efforts devoted toward educating the public of the dangers of illicit drug use. A variety of pharmacotherapies and psychosocial programs have been proposed in an effort to provide a method for alleviation of the physical and psychological symptoms of cocaine abuse. Unfortunately, these methods have been met with limited success, illustrating a critical need for new effective approaches for the treatment of cocaine addiction. Recently an alternative cocaine abuse treatment strategy was proposed using intranasal administration of an engineered filamentous bacteriophage displaying cocaine-sequestering antibodies on its surface. These phage particles are an effective vector for CNS penetration and are capable of binding cocaine, thereby blocking its behavioral effects in a rodent model. The convergence of phage display and immunopharmacotherapy has allowed for an investigation of the efficacy of protein-based therapeutics acting within the CNS on the effects of cocaine in animal models and has uncovered a new tool in the battle against cocaine addiction.

Keywords: cocaine, central nervous system, immunopharmacotherapy, virus, phage display

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Footnotes

A retraction note to this article is available at 10.1208/s12248-012-9365-2.

This article has been retracted because of a substantial degree of duplication with "Bacteriophage-mediated protein delivery into the central nervous system and its application in immunopharmacotherapy. Expert Opin Biol Ther. 2005 Jun;5(6) 773–781."

References

  • 1.Koob GF. Neurobiology of addiction. Toward the development of new therapies. Ann NY Acad Sci. 2000;909:170–185. doi: 10.1111/j.1749-6632.2000.tb06682.x. [DOI] [PubMed] [Google Scholar]
  • 2.Weiss F., Koob GF. Drug addiction: functional neurotoxicity of the brain reward systems. Neurotoxic Res. 2001;3:145–156. doi: 10.1007/BF03033235. [DOI] [PubMed] [Google Scholar]
  • 3.Melichar JK, Daglish MRC, Nutt DJ. Addiction and withdrawalcurrent views. Curr Opin Pharmacol. 2001;1:84–90. doi: 10.1016/S1471-4892(01)00011-X. [DOI] [PubMed] [Google Scholar]
  • 4.Spanagel R, Weiss F. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 1999;22:521–527. doi: 10.1016/S0166-2236(99)01447-2. [DOI] [PubMed] [Google Scholar]
  • 5.Di Chiana G. The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend. 1995;38:95–137. doi: 10.1016/0376-8716(95)01118-I. [DOI] [PubMed] [Google Scholar]
  • 6.Johanson C-E, Fischman MW. The pharmacology of cocaine related to its abuse. Pharmacol Rev. 1989;41:3–52. [PubMed] [Google Scholar]
  • 7.Blaine JD, Ling W. Psychopharm acologic treatment of cocaine dependence. Psychopharmacol Bull. 1992;28:11–14. [PubMed] [Google Scholar]
  • 8.Substance Abuse and Mental Health Services Administration, Office of Applied Studies . Preliminary estimates from the 1992 Household Survey on Drug Abuse. Washington, DC: US Department of Health and Human Services, Public Health Service; 1993. [Google Scholar]
  • 9.Cregler LL, Herbert M. Medical complications of cocaine abuse. N Engl J Med. 1986;315:1495–1500. doi: 10.1056/NEJM198612043152327. [DOI] [PubMed] [Google Scholar]
  • 10.Des Jarlais DC, Friedman SR. AIDS and i.v. drug use. Science. 1989;245:578–579. doi: 10.1126/science.2762809. [DOI] [PubMed] [Google Scholar]
  • 11.Lee JH, Bennett G. Substaance abuse in adulthood. In: Bennett G, Woolf D, editors. Substance Abuse: Pharmacologic, Developmental and Clinical Perspectives. Albany: Delman Publishing; 1991. pp. 157–170. [Google Scholar]
  • 12.Walsh SL. Behavioral pharmacology of cocaine. In: Tarter RE, Ammerman RT, Ott PJ, editors. Handbook of Substance Abuse: Neurobehavioral Pharmacology. New York: Plenum; 1998. pp. 187–200. [Google Scholar]
  • 13.Mendelson JH, Mello NK. Management of cocaine abuse and dependence. N Engl J Med. 1996;334:965–972. doi: 10.1056/NEJM199604113341507. [DOI] [PubMed] [Google Scholar]
  • 14.Gorelick DA. Pharmacologic interventions for cocaine, crack, and other stimulant addiction. In: Graham AW, Schultz TK, editors. Principles of Addiction Medicine. Chevy Chase, MD: American Society of Addiction Medicine; 2003. pp. 89–111. [Google Scholar]
  • 15.Gorelick DA, Gardner EL, Xi Z-X. Agents in the development for the management of cocaine abuse. Drugs. 2004;64:1547–1573. doi: 10.2165/00003495-200464140-00004. [DOI] [PubMed] [Google Scholar]
  • 16.Leiderman DB, Shoptaw S, Montgomery A, et al. Cocaine rapid efficacy screening trial (CREST). A paradigm for the controlled evaluation of candidate medications for cocaine dependence. Addiction. 2005;100:1–11. doi: 10.1111/j.1360-0443.2005.00988.x. [DOI] [PubMed] [Google Scholar]
  • 17.Winhusen TM, Somoza EC, Harrer JM, et al. A placebo-controlled screening trial of tiagabine, sertaline and donepezil as cocaine dependence treatment. Addiction. 2005;100:68–77. doi: 10.1111/j.1360-0443.2005.00992.x. [DOI] [PubMed] [Google Scholar]
  • 18.Gonzalez G, Sevarino K, Sofuoglu M, et al. Tiagabine increases cocaine-free urines in cocaine-dependent methadone-treated patients: results of a randomized pilot study. Addiction. 2003;98:1625–1632. doi: 10.1046/j.1360-0443.2003.00544.x. [DOI] [PubMed] [Google Scholar]
  • 19.Carroll KM, Fenton LR, Ball SA, et al. Efficacy of disulfiram and cognitive behavior therapy in cocaine-dependent outpatients: a randomized placebo-controlled trial. Arch Gen Psychiatry. 2004;61:264–272. doi: 10.1001/archpsyc.61.3.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Houtsmuller EJ, Notes LD, Newton T, et al. Transdermal selegiline and intravenous cocaine: safety and interactions. Psychopharmacology (Berl). 2004;172:31–40. doi: 10.1007/s00213-003-1616-6. [DOI] [PubMed] [Google Scholar]
  • 21.Shoptaw S, Yang X, Rotheram-Fuller EJ, et al. Randomized placebo-controlled trial of baclofen for cocaine dependence: preliminary effects for individuals with chronic patterns of cocaine use. J Clin Psychiatry. 2003;64:1440–1448. doi: 10.4088/JCP.v64n1207. [DOI] [PubMed] [Google Scholar]
  • 22.Kampman KM, Pettinati H, Lynch KG, et al. A pilot trial of topiramate for the treatment of cocaine dependence. Drug Alcohol Depend. 2004;75:233–240. doi: 10.1016/j.drugalcdep.2004.03.008. [DOI] [PubMed] [Google Scholar]
  • 23.Kampman KM, Volpicelli JR, Mulvaney F, et al. Effectiveness of propranolol for cocaine dependence treatment may depend on cocaine withdrawal symptom severity. Drug Alcohol Depend. 2001;63:69–78. doi: 10.1016/S0376-8716(00)00193-9. [DOI] [PubMed] [Google Scholar]
  • 24.Hoffman JA, Caudill BD, Koman JJ, Luckey JW, Flynn PM, Hubbard RL. Comparative cocaine abuse treatment strategies: enhancing client retention and treatment exposure. J Addict Dis. 1994;13:115–128. doi: 10.1300/J069v13n04_01. [DOI] [PubMed] [Google Scholar]
  • 25.Cashman JR. Biocatalysts in detoxication of drug of abuse. NIDA Res Monogr. 1997;173:225–258. [PubMed] [Google Scholar]
  • 26.Carrera MRA, Ashley JA, Parsons LH, Wirsching P, Koob GF, Janda KD. Suppression of psychoactive effects of cocaine by active immunization. Nature. 1995;378:727–730. doi: 10.1038/378727a0. [DOI] [PubMed] [Google Scholar]
  • 27.Carrera MRA, Ashley JA, zhou B, Wirsching P, Koob GF, Janda KD. Cocaine vaccines: antibody protection against relapse in a rat model. Proc Natl Acad Sci USA. 2000;97:6202–6206. doi: 10.1073/pnas.97.11.6202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Carrera MRA, Ashley JA, Wirsching P, Koob GF, Janda KD. A second-generation vaccine protects against the psychoactive effects of cocaine. Proc Natl Acad Sci USA. 2001;98:1988–1992. doi: 10.1073/pnas.98.4.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Fox BS, Kantak KM, Edwards MA, et al. Efficacy of a therapeutic cocaine vaccine in rodent models. Nat Med. 1996;2:11129–11132. doi: 10.1038/nm1096-1129. [DOI] [PubMed] [Google Scholar]
  • 30.Kantak KM, Collins SL, Lipman EG, Bond J, Giovanoni K, Fox BS. Evaluation of anti-cocaine antibodies and a cocaine vaccine in a rat self-administration model. Psychopharmacology (Berl.) 2000;148:251–262. doi: 10.1007/s002130050049. [DOI] [PubMed] [Google Scholar]
  • 31.Landry DW, Zhao K, Yang GX-P, Glickman M, Georgiadis TM. Antibody-catalyzed degradation of cocaine. Science. 1993;259:1899–1901. doi: 10.1126/science.8456315. [DOI] [PubMed] [Google Scholar]
  • 32.Cashman JR, Berkman CE, Underiner GE. Catalytic antibodies that hydrolyze (−)-cocaine obtained by a high-throughput procedure. J Pharmacol Exp Ther. 2000;293:952–961. [PubMed] [Google Scholar]
  • 33.Yang G, Chun J, Arakawa-Uramoto H, et al. Anti-cocaine catalytic antibodies: a synthetic approach to improved antibody diversity. J Am Chem. Soc. 1996;118:5880–5890. [Google Scholar]
  • 34.Baird TJ, Deng S-X, Landry DW, Winger G, Woods JH. Natural and artificial enzymes against cocaine. I. Monoclonal antibody 15A10 and the reinforcing effects of cocaine in rats. J Pharmacol Exp Ther. 2000;295:1127–1134. [PubMed] [Google Scholar]
  • 35.Matsushita M, Hoffman TZ, Ashley JA, Zhou B, Wirsching P, Janda KD. Cocaine catalytic antibodies: the primary importance of linker effects. Bioorg Med Chem Lett. 2001;11:87–90. doi: 10.1016/S0960-894X(00)00659-4. [DOI] [PubMed] [Google Scholar]
  • 36.Isomura S., Hoffman TZ, Wirsching P, Janda KD. Synthesis, properties, and reactivity of cocaine benzoylthioester possessing the cocaine absolute configuration. J Am Chem Soc. 2002;124:3661–3668. doi: 10.1021/ja012376y. [DOI] [PubMed] [Google Scholar]
  • 37.Meijler MM, Matsushita M, Wirsching P, Janda KD. Development of immunopharmacotherapy against drugs of abuse. Curr Drug Discov Tech. 2004;1:77–89. doi: 10.2174/1570163043484851. [DOI] [PubMed] [Google Scholar]
  • 38.Haney M, Kosten TR. Therapeutic vaccines for substance dependence. Expert Rev Vaccines. 2004;3:11–18. doi: 10.1586/14760584.3.1.11. [DOI] [PubMed] [Google Scholar]
  • 39.Gorelick DA. Enhancing cocaine metabolism with butyrylcholinesterase as a treatment strategy. Drug Alcohol Depend. 1997;48:159–165. doi: 10.1016/S0376-8716(97)00119-1. [DOI] [PubMed] [Google Scholar]
  • 40.Mattes CE, Belendiuk GW, Lynch TJ, Brady RO, Dretchen KL. Butyrylcholinesterase: an enzyme antidote for cocaine intoxication. Addict Biol. 1998;3:171–188. doi: 10.1080/13556219872236. [DOI] [PubMed] [Google Scholar]
  • 41.Nachon F, Nicolet Y, Viquie N, Masson P, Fontecilla-Camps JD, Lockridge O. Engineering of a monomeric and low-glycosylated form of human butyrylcholinesterase: expression, purification, characterization and crystallization. Eur J Biochem. 2002;269:630–637. doi: 10.1046/j.0014-2956.2001.02692.x. [DOI] [PubMed] [Google Scholar]
  • 42.Mattes CE, Lynch TJ, Singh A, et al. Therapeutic use of butyrylcholinesterase for cocaine intoxication. Toxicol Appl Pharmacol. 1997;145:372–380. doi: 10.1006/taap.1997.8188. [DOI] [PubMed] [Google Scholar]
  • 43.Sun H, Pang Y-P, Lockridge O, Brimijoin S. Re-engineering butyrylcholinesterase as a cocaine hydrolase. Mol Pharmacol. 2002;62:220–224. doi: 10.1124/mol.62.2.220. [DOI] [PubMed] [Google Scholar]
  • 44.Larocca D, Burg MA, Jensen-Pergakes K, Ravey PE, Gonzales AM, Baird A. Evolving phage vectors for cell targeted gene delivery. Curr Pharm Biotechnol. 2002;3:45–57. doi: 10.2174/1389201023378490. [DOI] [PubMed] [Google Scholar]
  • 45.Smith GP. Filamentous fusion phage, novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–1317. doi: 10.1126/science.4001944. [DOI] [PubMed] [Google Scholar]
  • 46.Carlton RM. Phage therapy: past history and future prospects. Arch Immunol Ther Exp (Warsz). 1999;47:267–274. [PubMed] [Google Scholar]
  • 47.Smith HW, Huggins RB. Successful treatment of experimental E coli infections in mice using phage: it general superiority over antibiotics. J Gen Microbiol. 1982;128:307–318. doi: 10.1099/00221287-128-2-307. [DOI] [PubMed] [Google Scholar]
  • 48.Slopek S, Weber-Dabrowska B, Dabrowski M, Kucharewicz-Krukowski A. Results in bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp (Warsz). 1986;35:569–583. [PubMed] [Google Scholar]
  • 49.Stone R. Stalin’s forgotten cure. Science. 2002;298:728–731. doi: 10.1126/science.298.5594.728. [DOI] [PubMed] [Google Scholar]
  • 50.Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996;380:364–366. doi: 10.1038/380364a0. [DOI] [PubMed] [Google Scholar]
  • 51.Essler M, Ruoslahti E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculatures. Proc Natl Acad Sci USA. 2002;99:2252–2257. doi: 10.1073/pnas.251687998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Dabrowska K., Switala-Jelen K, Opolski A, Weber-Dabrowska B, Gorski A. Bacteriophage penetration in vertebrates. J Appl Microbiol. 2005;98:7–13. doi: 10.1111/j.1365-2672.2004.02422.x. [DOI] [PubMed] [Google Scholar]
  • 53.Frenkel D, Solomon B. Filamentous phage as vector-mediated antibody delivery to the brain. Proc Natl Acad Sci USA. 2002;99:5675–5679. doi: 10.1073/pnas.072027199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Gao C, Mao S, Lo C-HL, Wirsching P, Lerner RA, Janda KD. Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci USA. 1999;96:6025–6030. doi: 10.1073/pnas.96.11.6025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Gao C, Mao S, Kaufmann G, Wirsching P, Lerner RA, Janda KD. A method for the generation of combinatorial antibody libraries using pIX phage display. Proc Natl Acad Sci USA. 2002;99:12612–12616. doi: 10.1073/pnas.192467999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Carrera MRA, Kaufmann GF, Mee JM, Meijler MM, Koob GF, Janda KD. Treating cocaine addiction with viruses. Proc Natl Acad Sci USA. 2004;101:10416–10421. doi: 10.1073/pnas.0403795101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Barbas CF, Burton DR, Scott JK, Silverman GJ. Phage Display: A Laboratory Manual. Tuebingen, Germany: Cold Spring Harbor Laboratory Press; 2001. [Google Scholar]
  • 58.Lyon M, Robbins TW. The action of central nervous system stimulant drugs: a general theory concerning amphetamine effects. In: Essman W, Valzelli L, editors. Current Developments in Psychopharmacology. New York: Spectrum; 1975. pp. 79–163. [Google Scholar]
  • 59.Illum L, Davis SS. Polymeric lamellar substrate particles for intranasal vaccination. Adv Drug Deliv Res. 2001;51:97–111. doi: 10.1016/S0169-409X(01)00171-5. [DOI] [PubMed] [Google Scholar]
  • 60.Jones N. The nose and paranasal sinuses physiology and anatomy. Adv Drug Deliv Rev. 2001;51:5–19. doi: 10.1016/S0169-409X(01)00172-7. [DOI] [PubMed] [Google Scholar]
  • 61.Bresler MM, Rosser SJ, Basran A, Bruce NC. Gene cloning and nucleotide sequencing and properties of a cocaine esterase fromRhodococcus sp strain MB1. Appl Environ Microbiol. 2000;66:904–908. doi: 10.1128/AEM.66.3.904-908.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES