Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2005 Oct 24;7(3):E659–E667. doi: 10.1208/aapsj070366

In vivo microdialysis for PK and PD studies of anticancer drugs

Qingyu Zhou 1, James M Gallo 1,
PMCID: PMC2751268  PMID: 16353942

Abstract

In vivo microdialysis technique has become one of the major tools to sample endogenous and exogenous substances in extracellular spaces. As a well-validated sampling technique, microdialysis has been frequently employed for quantifying drug disposition at the desired target in both preclinical and clinical settings. This review addresses general methodological considerations critical to performing microdialysis in tumors, highlights selected preclinical and clinical studies that characterized drug disposition in tumors by the use of microdialysis, and illustrates the potential application of microdialysis in the assessment of tumor response to cancer treatment.

Keywords: microdialysis, in vivo sampling, tumors, drug distribution, pharmacokinetics

Full Text

The Full Text of this article is available as a PDF (247.8 KB).

References

  • 1.Galmarini CM, Galmarini FC. Multidrug resistance in cancer therapy: role of the microenvironment. Curr Opin Investig Drugs. 2003;4:1416–1421. [PubMed] [Google Scholar]
  • 2.Hryniuk WM. The importance of dose intensity in the outcome of chemotherapy. In:Important Adv Oncol. 1988:121–141. [PubMed]
  • 3.Masson E, Zamboni WC. PK optimisation of cancer chemotherapy: effect on outcomes. Clin Pharmacokinet. 1997;32:324–343. doi: 10.2165/00003088-199732040-00005. [DOI] [PubMed] [Google Scholar]
  • 4.Yuan F. Transvascular drug delivery in solid tumors. Semin Radiat Oncol. 1998;8:164–175. doi: 10.1016/S1053-4296(98)80042-8. [DOI] [PubMed] [Google Scholar]
  • 5.Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev. 2001;46:149–168. doi: 10.1016/S0169-409X(00)00131-9. [DOI] [PubMed] [Google Scholar]
  • 6.Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64:3731–3736. doi: 10.1158/0008-5472.CAN-04-0074. [DOI] [PubMed] [Google Scholar]
  • 7.Müller M, Mader RM, Steiner B, et al. 5-fluorouracil kinetics in the interstitial tumor space: clinical response in breast cancer patients. Cancer Res. 1997;57:2598–2601. [PubMed] [Google Scholar]
  • 8.Hunz M, Jetter A, Wilde S, et al. Plasma and tissue PKs of epirubicin in nine patients with primary breast cancer. Eur J Clin Pharmacol. 2001;57:A31–A31. doi: 10.1007/s002280100268. [DOI] [Google Scholar]
  • 9.Garimella TS, Ross DD, Eiseman JL, et al. Plasma PKs and tissue distribution of the breast cancer resistance protein (BCRP/ABCG2) inhibitor fumitremorgin C in SCID mice bearing T8 tumors. Cancer Chemother Pharmacol. 2005;55:101–109. doi: 10.1007/s00280-004-0866-2. [DOI] [PubMed] [Google Scholar]
  • 10.Meikle SR, Matthews JC, Brock CS, et al. PK assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study. Cancer Chemother Pharmacol. 1998;42:183–193. doi: 10.1007/s002800050804. [DOI] [PubMed] [Google Scholar]
  • 11.Fischman AJ, Alpert NM, Babich JW, Rubin RH. The role of positron emission tomography in PK analysis. Drug Metab Rev. 1997;29:923–956. doi: 10.3109/03602539709002238. [DOI] [PubMed] [Google Scholar]
  • 12.Jynge P, Skjetne T, Gribbestad I, et al. In vivo tissue PKs by fluorine magnetic resonance spectroscopy: a study of liver and muscle disposition of fleroxacin in humans. Clin Pharmacol Ther. 1990;48:481–489. doi: 10.1038/clpt.1990.183. [DOI] [PubMed] [Google Scholar]
  • 13.Artemov D, Solaiyappan M, Bhujwalla ZM. Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid tumors. Cancer Res. 2001;61:3039–3044. [PubMed] [Google Scholar]
  • 14.Benveniste H, Huttemeier PC. Microdialysis—theory and application. Prog Neurobiol. 1990;35:195–215. doi: 10.1016/0301-0082(90)90027-E. [DOI] [PubMed] [Google Scholar]
  • 15.Ungerstedt U. Microdialysis—principles and applications for studies in animals and man. J Intern Med. 1991;230:365–373. doi: 10.1111/j.1365-2796.1991.tb00459.x. [DOI] [PubMed] [Google Scholar]
  • 16.Benveniste H. Brain microdialysis. J Neurochem. 1989;52:1667–1679. doi: 10.1111/j.1471-4159.1989.tb07243.x. [DOI] [PubMed] [Google Scholar]
  • 17.Elmquist WF, Sawchuk RJ. Application of microdialysis in PK studies. Pharm Res. 1997;14:267–288. doi: 10.1023/A:1012081501464. [DOI] [PubMed] [Google Scholar]
  • 18.Garrison KE, Pasas SA, Cooper JD, Davies MI. A review of membrane sampling from biological tissues with applications in PKs, metabolism and PDs. Eur J Pharm Sci. 2002;17:1–12. doi: 10.1016/S0928-0987(02)00149-5. [DOI] [PubMed] [Google Scholar]
  • 19.Chu J, Gallo JM. Application of microdialysis to characterize drug disposition in tumors. Adv Drug Deliv Rev. 2000;45:243–253. doi: 10.1016/S0169-409X(00)00115-0. [DOI] [PubMed] [Google Scholar]
  • 20.Mader RM, Schrolnberger C, Rizovski B, et al. Penetration of capecitabine and its metabolites into malignant and healthy tissues of patients with advanced breast cancer. Br J Cancer. 2003;88:782–787. doi: 10.1038/sj.bjc.6600809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Brunner M, Muller M. Microdialysis: an in vivo approach for measuring drug delivery in oncology. Eur J Clin Pharmacol. 2002;58:227–234. doi: 10.1007/s00228-002-0475-0. [DOI] [PubMed] [Google Scholar]
  • 22.Johnson RD, Justice JB. Model studies for brain dialysis. Brain Res Bull. 1983;10:567–571. doi: 10.1016/0361-9230(83)90156-9. [DOI] [PubMed] [Google Scholar]
  • 23.Ungerstedt U. Measurement of transmitter release by intracerebral dialysis. In: Marsden CA, editor. Measurement of Neurotransmitter Release In Vivo. Chichester, UK: John Wiley & Sons; 1984. pp. 81–105. [Google Scholar]
  • 24.Ståhle L. On mathematical models of microdialysis: geometry, steady-state models, recovery and probe radius. Adv Drug Deliv Rev. 2000;45:149–167. doi: 10.1016/S0169-409X(00)00108-3. [DOI] [PubMed] [Google Scholar]
  • 25.Lönnroth P, Jansson P, Smith U. A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol. 1987;253:E228–E231. doi: 10.1152/ajpendo.1987.253.2.E228. [DOI] [PubMed] [Google Scholar]
  • 26.Ståhle L. Drug distribution studies with microdialysis. I. Tissue dependent difference in recovery between caffeine and theophylline. Life Sci. 1991;49:1835–1842. doi: 10.1016/0024-3205(91)90486-U. [DOI] [PubMed] [Google Scholar]
  • 27.Larsson CI. The use of an “internal standard” for control of the recovery in microdialysis. Life Sci. 1991;49:PL73–PL78. doi: 10.1016/0024-3205(91)90082-M. [DOI] [PubMed] [Google Scholar]
  • 28.Menacherry S, Hubert W, Justice JB. In vivo calibration of microdialysis probes for exogenous compounds. Anal Chem. 1992;64:577–583. doi: 10.1021/ac00030a003. [DOI] [PubMed] [Google Scholar]
  • 29.Yokel RA, Allen DD, Burgio DE, McNamara PJ. Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis. J Pharmacol Toxicol Methods. 1992;27:135–142. doi: 10.1016/1056-8719(92)90034-X. [DOI] [PubMed] [Google Scholar]
  • 30.Van Belle K, Dzeka T, Sarre S, Ebinger G, Michotte Y. In vitro and in vivo microdialysis calibration for the measurement of carbamazepine and its metabolites in rat brain tissue using the internal reference technique. J Neurosci Methods. 1993;49:167–173. doi: 10.1016/0165-0270(93)90120-G. [DOI] [PubMed] [Google Scholar]
  • 31.Wang Y, Wong SL, Sawchuk RJ. Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharm Res. 1993;10:1411–1419. doi: 10.1023/A:1018906821725. [DOI] [PubMed] [Google Scholar]
  • 32.Le Quellec A, Dupin S, Genissel P, Saivin S, Marchand B, Houin G. Microdialysis probes calibration: gradient and tissue dependent changes in no net flux and reverse dialysis methods. J Pharmacol Toxicol Methods. 1995;33:11–16. doi: 10.1016/1056-8719(94)00049-A. [DOI] [PubMed] [Google Scholar]
  • 33.Clement R, Malinovsky JM, Dollo G, Le Corre P, Chevanne F, Le Verge R. In vitro and in vivo microdialysis calibration using retrodialysis for the study of the cerebrospinal distribution of bupivacaine. J Pharm Biomed Anal. 1998;17:665–670. doi: 10.1016/S0731-7085(97)00274-4. [DOI] [PubMed] [Google Scholar]
  • 34.Ståhle L. Drug distribution studies with microdialysis. I. Tissue dependent difference in recovery between caffeine and theophylline. Life Sci. 1991;49:1835–1842. doi: 10.1016/0024-3205(91)90486-U. [DOI] [PubMed] [Google Scholar]
  • 35.Stenken JA. Methods and issues in microdialysis calibration. Anal Chim Acta. 1999;379:337–358. doi: 10.1016/S0003-2670(98)00598-4. [DOI] [Google Scholar]
  • 36.Chaurasia CS. In vivo microdialysis sampling: theory and applications. Biomed Chromatogr. 1999;13:317–332. doi: 10.1002/(SICI)1099-0801(199908)13:5<317::AID-BMC891>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  • 37.Jacobson I, Sandberg M, Hamberger A. Mass transfer in brain dialysis devices—a new method for the estimation of extracellular amino acids concentration. J Neurosci Methods. 1985;15:263–268. doi: 10.1016/0165-0270(85)90107-4. [DOI] [PubMed] [Google Scholar]
  • 38.Trickler WJ, Miller DW. Use of osmotic agents in microdialysis studies to improve the recovery of macromolecules. J Pharm Sci. 2003;92:1419–1427. doi: 10.1002/jps.10410. [DOI] [PubMed] [Google Scholar]
  • 39.Dabrosin C, Margetts PJ, Gauldie J. Estradiol increases extracellular levels of vascular endothelial growth factor in vivo in murine mammary cancer. Int J Cancer. 2003;107:535–540. doi: 10.1002/ijc.11398. [DOI] [PubMed] [Google Scholar]
  • 40.Sjogren F, Svensson C, Anderson C. Technical prerequisites for in vivo microdialysis determination of interleukin-6 in human dermis. Br J Dermatol. 2002;146:375–382. doi: 10.1046/j.1365-2133.2002.04621.x. [DOI] [PubMed] [Google Scholar]
  • 41.Rosdahl H, Ungerstedt U, Henriksson J. Microdialysis in human skeletal muscle and adipose tissue at low flow rates is possible if dextran-70 is added to prevent loss of perfusion fluid. Acta Physiol Scand. 1997;159:261–262. doi: 10.1046/j.1365-201X.1997.123358000.x. [DOI] [PubMed] [Google Scholar]
  • 42.Ault JM, Riley CM, Meltzer NM, Lunte CE. Dermal microdialysis sampling in vivo. Pharm Res. 1994;11:1631–1639. doi: 10.1023/A:1018922123774. [DOI] [PubMed] [Google Scholar]
  • 43.Davies MI, Lunte CE. Microdialysis sampling for hepatic metabolism studies: impact of microdialysis probe design and implantation technique on liver tissue. Drug Metab Dispos. 1995;23:1072–1079. [PubMed] [Google Scholar]
  • 44.Palsmeier RK, Lunte CE. Microdialysis sampling of tumors for study of the metabolism of antineoplastic agents. Cancer Bull. 1994;46:58–66. [Google Scholar]
  • 45.Westergren I, Nystrom B, Hamberger A, Johansson BB. Intracerebral dialysis and the blood-brain barrier. J Neurochem. 1995;64:229–234. doi: 10.1046/j.1471-4159.1995.64010229.x. [DOI] [PubMed] [Google Scholar]
  • 46.Morgan ME, Singhal D, Anderson BD. Quantitative assessment of blood-brain barrier damage during microdialysis. J Pharmacol Exp Ther. 1996;277:1167–1176. [PubMed] [Google Scholar]
  • 47.Groothuis DR, Ward S, Schlageter KE, et al. Changes in blood-brain barrier permeability associated with insertion of brain cannulas and microdialysis probes. Brain Res. 1998;803:218–230. doi: 10.1016/S0006-8993(98)00572-1. [DOI] [PubMed] [Google Scholar]
  • 48.Joukhadar C, Klein N, Mader RM, et al. Penetration of dacarbazine and its active metabolite 5-aminoimidazole-4-carboxamide into cutaneous metastases of human malignant melanoma. Cancer. 2001;92:2190–2196. doi: 10.1002/1097-0142(20011015)92:8<2190::AID-CNCR1562>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  • 49.Johansen MJ, Thapar N, Newman RA, Madden T. Use of microdialysis to study platinum anticancer agent PKs in preclinical models. J Exp Ther Oncol. 2002;2:163–173. doi: 10.1046/j.1359-4117.2002.01019.x. [DOI] [PubMed] [Google Scholar]
  • 50.Zamboni WC, Gervais AC, Egorin MJ, et al. Inter- and intratumoral disposition of platinum in solid tumors after administration of cisplatin. Clin Cancer Res. 2002;8:2992–2999. [PubMed] [Google Scholar]
  • 51.Dukic SF, Kaltenbach ML, Heurtaux T, Hoizey G, Lallemand A, Vistelle R. Influence of C6 and CNS1 brain tumors on methotrexate PKs in plasma and brain tissue. J Neurooncol. 2004;67:131–138. doi: 10.1023/B:NEON.0000021820.12444.4c. [DOI] [PubMed] [Google Scholar]
  • 52.Leggas M, Zhuang Y, Welden J, Self Z, Waters CM, Stewart CF. Microbore HPLC method with online microdialysis for measurement of topotecan lactone and carboxylate in murine CitCSF. J Pharm Sci. 2004;93:2284–2295. doi: 10.1002/jps.20134. [DOI] [PubMed] [Google Scholar]
  • 53.Tokunaga Y, Nakashima M, Sasaki H, et al. Local distribution into brain tumor and PKs of 4-pyridoxate diammine hydroxy platinum, a novel cisplatin derivative, after intracarotid administration in rats with 9L malignant glioma: simultaneous brain microdialysis study. Biol Pharm Bull. 2000;23:1491–1496. doi: 10.1248/bpb.23.1491. [DOI] [PubMed] [Google Scholar]
  • 54.Zamboni WC, Gervais AC, Egorin MJ, et al. Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumors model of melanoma. Cancer Chemother Pharmacol. 2004;53:329–336. doi: 10.1007/s00280-003-0719-4. [DOI] [PubMed] [Google Scholar]
  • 55.Ma J, Pulfer S, Li S, Chu J, Reed K, Gallo JM. PD-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res. 2001;61:5491–5498. [PubMed] [Google Scholar]
  • 56.Ma J, Li S, Reed K, Guo P, Gallo JM. PD-mediated effects of the angiogenesis inhibitor SU5416 on the tumor disposition of temozolomide in subcutaneous and intracerebral glioma xenograft models. J Pharmacol Exp Ther. 2003;305:833–839. doi: 10.1124/jpet.102.048587. [DOI] [PubMed] [Google Scholar]
  • 57.Harrington KJ, Lewanski CR, Northcote AD, et al. Phase I–II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann Oncol. 2001;12:493–496. doi: 10.1023/A:1011199028318. [DOI] [PubMed] [Google Scholar]
  • 58.Devineni D, Klein-Szanto A, Gallo JM. In vivo microdialysis to characterize drug transport in brain tumors: analysis of methotrexate uptake in rat glioma-2 (RG-2)-bearing rats. Cancer Chemother Pharmacol. 1996;38:499–507. doi: 10.1007/s002800050518. [DOI] [PubMed] [Google Scholar]
  • 59.Devineni D, Klein-Szanto A, Gallo JM. Uptake of temozolomide in a rat glioma model in the presence and absence of the angiogenesis inhibitor TNP-470. Cancer Res. 1996;56:1983–1987. [PubMed] [Google Scholar]
  • 60.Teicher BA, Dupuis NP, Robinson MF, Emi Y, Goff DA. Antiangiogenic treatment (TNP-470/minocycline) increases tissue levels of anticancer drugs in mice bearing Lewis lung carcinoma. Oncol Res. 1995;7:237–243. [PubMed] [Google Scholar]
  • 61.Tegeder I, Brautigam L, Seegel M, et al. Cisplatin tumor concentrations after intra-arterial cisplatin infusion or embolization in patients with oral cancer. Clin Pharmacol Ther. 2003;73:417–426. doi: 10.1016/S0009-9236(03)00008-0. [DOI] [PubMed] [Google Scholar]
  • 62.Joukhadar C, Klein N, Mader RM, et al. Penetration of dacarbazine and its active metabolite 5-aminoimidazole-4-carboxamide into cutaneous metastases of human malignant melanoma. Cancer. 2001;92:2190–2196. doi: 10.1002/1097-0142(20011015)92:8<2190::AID-CNCR1562>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  • 63.Ekstrom PO, Andersen A, Saeter G, Giercksky KE, Slordal L. Continuous intratumoral microdialysis during high-dose methotrexate therapy in a patient with malignant fibrous histiocytoma of the femur: a case report. Cancer Chemother Pharmacol. 1997;39:267–272. doi: 10.1007/s002800050571. [DOI] [PubMed] [Google Scholar]
  • 64.Müller M, Brunner M, Schmid R, et al. Intestitials methotrexate kinetics in primary breast cancer lesions. Cancer Res. 1998;58:2982–2985. [PubMed] [Google Scholar]
  • 65.Schüller J, Cassidy J, Dumont E, et al. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother Pharmacol. 2000;45:291–297. doi: 10.1007/s002800050043. [DOI] [PubMed] [Google Scholar]
  • 66.Abe R, Akiyoshi T, Baba T. Inactivation of cisdiamminedichloroplatinum (II) in blood by sodium thiosulfate. Oncology. 1990;47:65–69. doi: 10.1159/000226787. [DOI] [PubMed] [Google Scholar]
  • 67.Zamboni WC, Houghton PJ, Hulstein JL, et al. Relationship between tumor extracellular fluid exposure to topotecan and tumor response in human neuroblastoma xenograft and cell lines. Cancer Chemother Pharmacol. 1999;43:269–276. doi: 10.1007/s002800050894. [DOI] [PubMed] [Google Scholar]
  • 68.Gallo JM, Vicini P, Orlansky A, et al. PK model-predicted anticancer drug concentration in human tumors. Clin Cancer Res. 2004;10:8048–8058. doi: 10.1158/1078-0432.CCR-04-0822. [DOI] [PubMed] [Google Scholar]
  • 69.Castejon AM, Paez X, Hernandez L, Cubeddu LX. Use of intravenous microdialysis to monitor changes in serotonin release and metabolism induced by cisplatin in cancer patients: comparative effects of granisertron and ondansetron. J Pharmacol Exp Ther. 1999;291:960–966. [PubMed] [Google Scholar]
  • 70.Paez X, Hernandez L. Plasma serotonin monitoring by blood microdialysis coupled to high-performance liquid chromatography with electrochemical detection in humans. J Chromatogr B Biomed Sci Appl. 1998;720:33–38. doi: 10.1016/S0378-4347(98)00417-4. [DOI] [PubMed] [Google Scholar]
  • 71.Garvin S, Dabrosin C. Tamoxifen inhibits secretion of vascular endothelial growth factor in breast cancer in vivo. Cancer Res. 2003;63:8742–8748. [PubMed] [Google Scholar]
  • 72.Dabrosin C. Variability of vascular endothelial growth factor in normal human breast tissue in vivo during the menstrual cycle. J Clin Endocrinol Metab. 2003;88:2695–2698. doi: 10.1210/jc.2002-021584. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES