Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2005 Oct 27;7(3):E704–E722. doi: 10.1208/aapsj070371

Kappa opioid antagonists: Past successes and future prospects

Matthew D Metcalf 1, Andrew Coop 1,
PMCID: PMC2751273  PMID: 16353947

Abstract

Antagonists of the kappa opioid receptor were initially investigated as pharmacological tools that would reverse the effects of kappa opioid receptor agonists. In the years following the discovery of the first selective kappa opioid antagonists, much information about their chemistry and pharmacology has been elicited and their potential therapeutic uses have been investigated. The review presents the current chemistry, ligand-based structure activity relationships, and pharmacology of the known nonpeptidic selective kappa opioid receptor antagonists. This manuscript endeavors to provide the reader with a useful reference of the investigations made to define the structure-activity relationships and pharmacology of selective kappa opioid receptor antagonists and their potential uses as pharmacological tools and as therapeutic agents in the treatment of disease states.

Keywords: Opioid, Opiate, Receptor, Kappa, Antagonist

Full Text

The Full Text of this article is available as a PDF (399.8 KB).

References

  • 1.Wang JB, Johnson PS, Persico AM, Hawkins AL, Griffin CA, Uhl GR. Human mu opiate receptor—cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett. 1994;338:217–222. doi: 10.1016/0014-5793(94)80368-4. [DOI] [PubMed] [Google Scholar]
  • 2.Mansson E, Bare L, Yang D. Isolation of a human kappa opioid receptor cDNA from placenta. Biochem Biophys Res Commun. 1994;202:1431–1434. doi: 10.1006/bbrc.1994.2091. [DOI] [PubMed] [Google Scholar]
  • 3.Kieffer BL, Befort K, Gavriaux-Ruff C, Hirth CG. The opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA. 1992;89:12048–12052. doi: 10.1073/pnas.89.24.12048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Peters GR, Gaylor S. Human central nervous system (CNS) effects of a selective kappa opioid agonist [abstract] Clin Pharmacol Ther. 1989;45:130–130. [Google Scholar]
  • 5.Casy AF, Parfitt RT. Opioid Analgesics. New York and London: Plenum Press; 1986. [Google Scholar]
  • 6.Schmidhammer H. Opioid receptor antagonists. Prog Med Chem. 1998;35:83–132. doi: 10.1016/S0079-6468(08)70035-3. [DOI] [PubMed] [Google Scholar]
  • 7.Coop A, Rice KC. Role of delta-opioid receptors in biological processes. Drug News Perspect. 2000;13:481–487. [PubMed] [Google Scholar]
  • 8.Rees DC. Chemical structures and biological activities of nonpeptide selective kappa opioid ligands. Prog Med Chem. 1992;29:109–139. doi: 10.1016/S0079-6468(08)70006-7. [DOI] [PubMed] [Google Scholar]
  • 9.Kuzmin AV, Gerrits MAFM, Van Ree JM. Kappa-opioid receptor blockade with nor-binaltorphimine modulates cocaine self-administration in drug-naïve rats. Eur J Pharmacol. 1998;358:197–202. doi: 10.1016/S0014-2999(98)00637-2. [DOI] [PubMed] [Google Scholar]
  • 10.Mague SD, Pliakas AM, Todtenkopf MS, et al. Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther. 2003;305:323–330. doi: 10.1124/jpet.102.046433. [DOI] [PubMed] [Google Scholar]
  • 11.Jewett DC, Grace MK, Jones RM, Billington CJ, Portoghese PS, Levine AS. The kappa-opioid antagonist GNTI reduces U50,488-, DAMGO-, and deprivation-induced feeding, but not butorphanol-and neuropeptide-Y-induced feeding in rats. Brain Res. 2001;909:75–80. doi: 10.1016/S0006-8993(01)02624-5. [DOI] [PubMed] [Google Scholar]
  • 12.Roth BL, Baner K, Westkaemper R, et al. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci USA. 2002;99:11934–11939. doi: 10.1073/pnas.182234399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Schmidhammer H. Opioid receptor antagonists. Prog Med Chem. 1998;35:83–132. doi: 10.1016/S0079-6468(08)70035-3. [DOI] [PubMed] [Google Scholar]
  • 14.Bennett MA, Murray TF, Aldrich JV. Identification of arodyn, a novel acetylated dynorphin A-(1–11) analogue, as a κ opioid receptor antagonist. J Med Chem. 2002;45:5617–5619. doi: 10.1021/jm025575g. [DOI] [PubMed] [Google Scholar]
  • 15.Weltrowska G, Lu Y, Lemieux C, Chung NN, Schiller PW. A novel cyclic enkephalin analogue with potent opioid antagonist activity. Bioorg Med Chem Lett. 2004;14:4731–4733. doi: 10.1016/j.bmcl.2004.06.077. [DOI] [PubMed] [Google Scholar]
  • 16.Aldrich JV. Analgesics. In: Abraham DJ, editor. Burger’s Medicinal Chemistry and Drug Discovery, Volume 6, Nervous System Agents. 6th ed. New York: John Wiley and Sons; 2003. pp. 329–482. [Google Scholar]
  • 17.Cowan A, Lewis JW. Buprenorphine: Combatting Drug Abuse with a Unique Opioid. New York: John Wiley and Sons; 1995. [Google Scholar]
  • 18.Devi LA. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling, and trafficking. Trends Pharmacol Sci. 2001;22:532–537. doi: 10.1016/S0165-6147(00)01799-5. [DOI] [PubMed] [Google Scholar]
  • 19.Rusovici DE, Negus SS, Mello NK, Bidlack JM. κ-opioid receptors are differentially labeled by arylacetamides and benzomorphans. Eur J Pharmacol. 2004;485:119–125. doi: 10.1016/j.ejphar.2003.11.078. [DOI] [PubMed] [Google Scholar]
  • 20.Zimmerman DM, Leander JD. Selective opioid receptor agonists and antagonists: research tools and potential therapeutic agents. J Med Chem. 1990;33:895–902. doi: 10.1021/jm00165a002. [DOI] [PubMed] [Google Scholar]
  • 21.Larson DL, Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Binding of norbinaltorphimine (norBNI) congeners to wild-type and mutant mu and kappa opioid receptors: molecular recognition loci for the pharmacophore and address components of kappa antagonists. J Med Chem. 2000;43:1573–1576. doi: 10.1021/jm000059g. [DOI] [PubMed] [Google Scholar]
  • 22.Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Mutational evidence for a common κ antagonist binding pocket in the wild-type κ and mutant μ[K303E] opioid receptors. J Med Chem. 1998;41:4911–4914. doi: 10.1021/jm9805182. [DOI] [PubMed] [Google Scholar]
  • 23.Sharma SK, Jones RM, Metzger TG, Ferguson DM, Portoghese PS. Transformation of a κ-opioid receptor antagonist to a κ-agonist by transfer of a guanidinium group form the 5′-to the 6′-position of naltrindole. J Med Chem. 2001;44:2073–2079. doi: 10.1021/jm010095v. [DOI] [PubMed] [Google Scholar]
  • 24.Stevens WC, Jones RM, Subramanian G, Metzger TG, Ferguson DM, Portoghese PS. Potent and selective indolomorphinan antagonists of the kappa-opioid receptor. J Med Chem. 2000;43:2759–2769. doi: 10.1021/jm0000665. [DOI] [PubMed] [Google Scholar]
  • 25.Metzger TG, Paterlini MG, Ferguson DM, Portoghese PS. Investigation of the selectivity of oxymorphone- and naltrexone-derived ligands via site directed mutagenesis of opioid receptors: exploring the ‘address’ recognition locus. J Med Chem. 2001;44:857–862. doi: 10.1021/jm000381r. [DOI] [PubMed] [Google Scholar]
  • 26.Kong H, Raynor K, Yano H, Takeda J, Bell GI, Reisine T. Agonists and antagonists bind to different domanins of the cloned κ opioid receptor. Proc Natl Acad Sci USA. 1994;91:8042–8046. doi: 10.1073/pnas.91.17.8042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Hjorth SA, Thirstrup K, Grandy DK, Schwartz TW. Analysis of selective binding epitopes for the κ-opioids receptor antagonist nor-binaltorphimine. Mol Pharmacol. 1995;47:1089–1094. [PubMed] [Google Scholar]
  • 28.Eguchi M. Recent Advances in selective opioid receptor agonists and antagonists. Med Res Rev. 2004;24:182–212. doi: 10.1002/med.10059. [DOI] [PubMed] [Google Scholar]
  • 29.Portoghese PS, Lipkowski AW, Takemori AE. Binaltorphimine and nor-binaltorphimine, potent and selective κ-opioid receptor antagonists. Life Sci. 1987;40:1287–1292. doi: 10.1016/0024-3205(87)90585-6. [DOI] [PubMed] [Google Scholar]
  • 30.Butelman ER, Harris TJ, Kreek MJ. The plant-derived hallucinogen, salvinorin A, produces kappa-opioid agonist-like discriminative effects in rhesus monkeys. Psychopharmacology (Berl) 2004;172:220–224. doi: 10.1007/s00213-003-1638-0. [DOI] [PubMed] [Google Scholar]
  • 31.Erez M, Takemori AE, Portoghese PS. Narcotic antagonistic potency of bivalent ligands which contain β-naltrexamine. Evidence for bridging between proximal recognition sites. J Med Chem. 1982;25:847–849. doi: 10.1021/jm00349a016. [DOI] [PubMed] [Google Scholar]
  • 32.Portoghese PS, Takemori AE. TENA, a selective kappa opioid receptor antagonist. Life Sci. 1985;36:801–805. doi: 10.1016/0024-3205(85)90202-4. [DOI] [PubMed] [Google Scholar]
  • 33.Botros S, Lipkowski AW, Takemori AE, Portoghese PS. Investigation of the structural requirements for the κ-selective opioid receptor antagonist, 6β,6β′-[ethlenebis(oxyethyleneimino)]bis[17-(cyclopropylmethyl)-4,5α-epoxymorphinan-3,14-diol] (TENA) J Med Chem. 1986;29:874–876. doi: 10.1021/jm00155a048. [DOI] [PubMed] [Google Scholar]
  • 34.Portoghese PS, Ronsisvalle G, Larson DL, Takemori AE. Synthesis and opioid antagonist potencies of naltrexamine bivalent ligands with conformationally restricted spacers. J Med Chem. 1986;29:1650–1653. doi: 10.1021/jm00159a014. [DOI] [PubMed] [Google Scholar]
  • 35.Portoghese PS, Larson DL, Sayre LM, et al. Opioid agonist and antagonist bivalent ligands. The relationship between spacer length and selectivity at multiple opioid receptors. J Med Chem. 1986;29:1855–1861. doi: 10.1021/jm00160a010. [DOI] [PubMed] [Google Scholar]
  • 36.Portoghese AS, Lipkowski AW, Takemori AE. Bimorphinans as highly selective, potent κ opioid receptor antagonists. J Med Chem. 1987;30:238–239. doi: 10.1021/jm00385a002. [DOI] [PubMed] [Google Scholar]
  • 37.Takemori AE, Portoghese PS. Selective naltrexone-derived opioid receptor antagonists. Annu Rev Pharmacol Toxicol. 1992;32:239–269. doi: 10.1146/annurev.pa.32.040192.001323. [DOI] [PubMed] [Google Scholar]
  • 38.Portoghese PS. Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends Pharmacol Sci. 1989;10:230–235. doi: 10.1016/0165-6147(89)90267-8. [DOI] [PubMed] [Google Scholar]
  • 39.Schwyzer R. ACTH: a short introductory review. Ann NY Acad Sci. 1977;297:3–26. doi: 10.1111/j.1749-6632.1977.tb41843.x. [DOI] [PubMed] [Google Scholar]
  • 40.Lin C, Takemori AE, Portoghese PS. Synthesis and κ-opioid antagonist selectivity of a norbinaltorphimine congener. Identification of the address moiety reqired for κ-antagonist activity. J Med Chem. 1993;36:2412–2415. doi: 10.1021/jm00068a020. [DOI] [PubMed] [Google Scholar]
  • 41.Thomas JB, Atkinson RN, Vinson A, et al. Identification of (3R)-7-Hydroxy-N-((1S)-1-{[(3R, 4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-2-methylpropyl)-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide as a novel potent and selective opioid κ receptor antagonist. J Med Chem. 2003;46:3127–3137. doi: 10.1021/jm030094y. [DOI] [PubMed] [Google Scholar]
  • 42.Grundt P, Williams IA, Lewis JW, Husbands SM. Identification of a new scaffold for κ opioid receptor antagonism based on the 2-amino-1, 1-dimethyl-7-hydroxytetralin pharmacophore. J Med Chem. 2004;47:5069–5075. doi: 10.1021/jm040807s. [DOI] [PubMed] [Google Scholar]
  • 43.Portoghese PS, Nagase H, Takemori AE. Only one pharmacophore is required for the κ opioid antagonist selectivity of norbinaltorphimine. J Med Chem. 1988;31:1344–1347. doi: 10.1021/jm00402a015. [DOI] [PubMed] [Google Scholar]
  • 44.Portoghese PS, Nagase H, Lipkowski AW, Larson DL, Takemori AE. Binaltorphimine-related bivalent ligands and their κ opioid receptor antagonist selectivity. J Med Chem. 1988;31:836–841. doi: 10.1021/jm00399a026. [DOI] [PubMed] [Google Scholar]
  • 45.Schmidhammer H, Ganglbauer E, Mitterdorfer J, Rollinger JM, Smith CFC. Synthesis and biological evaluation of 14-alkoxymorphinans 14,14′-dimethoxy analogues of norbinaltorphimine: synthesis and determination of their κ opioid antagonist selectivity. Helv Chim Acta. 1990;73:1779–1783. doi: 10.1002/hlca.19900730622. [DOI] [Google Scholar]
  • 46.Schmidhammer H, Smith CFC. A simple and efficient method for the preparation of binaltorphimine and derivatives and determination of their κ opioid antagonist selectivity. Helv Chim Acta. 1989;72:675–677. doi: 10.1002/hlca.19890720408. [DOI] [Google Scholar]
  • 47.Portoghese PS, Garzon-Aburbeh A, Nagase H, Lin C, Takemori AE. Role of the spacer in conferring κ opioid receptor selectivity to bivalent ligands related to norbinaltorphimine. J Med Chem. 1991;34:1292–1296. doi: 10.1021/jm00108a008. [DOI] [PubMed] [Google Scholar]
  • 48.Portoghese PS, Lin C, Farouz-Grant R, Takemori AE. Structure-activity relationship of N17′substituted norbinaltorphimine congeners. Role of the N17′ basic group in the interaction with a putative address subsite on the κ opioid receptor. J Med Chem. 1994;37:1495–1500. doi: 10.1021/jm00036a015. [DOI] [PubMed] [Google Scholar]
  • 49.Thomas JB, Fix SE, Rothman RB, et al. Importance of phenolic address groups in opioid kappa receptor selective antagonists. J Med Chem. 2004;47:1070–1073. doi: 10.1021/jm030467v. [DOI] [PubMed] [Google Scholar]
  • 50.Marki A, Otvos F, Toth G, Hosztafi S, Borsodi A. Tritiated kappa receptor antagonist norbinaltorphimine: synthesis and in vitro binding in three different tissues. Life Sci. 2000;66:43–49. doi: 10.1016/S0024-3205(99)00560-3. [DOI] [PubMed] [Google Scholar]
  • 51.Olmsted SL, Takemori AE, Portoghese PS. A remarkable change of opioid receptor selectivity on the attachment of a peptidomimetic κ address element to the δ antagonist, naltrindole: 5′-[(N2-alkylamidino) methyl]naltrindole derivatives as a novel class of κ opioid receptor antagonists. J Med Chem. 1993;36:179–180. doi: 10.1021/jm00053a025. [DOI] [PubMed] [Google Scholar]
  • 52.Jones RM, Portoghese PS. 5′-Guanidinonaltrindole, a highly selective and potent κ-opioid receptor antagonist. Eur J Pharmacol. 2000;396:49–52. doi: 10.1016/S0014-2999(00)00208-9. [DOI] [PubMed] [Google Scholar]
  • 53.Jales AR, Husbands SM, Lewis JW. Selective κ-opioid antagonists related to naltrindole. Effect of side-chain spacer in the 5′-amidinoalkyl series. Bioorg Med Chem Lett. 2000;10:2259–2261. doi: 10.1016/S0960-894X(00)00433-9. [DOI] [PubMed] [Google Scholar]
  • 54.Black SL, Jales AR, Brandt W, Lewis JW, Husbands SM. The role of the side chain in determining relative δ- and κ-affinity in C5′-substituted analogues of naltrindole. J Med Chem. 2003;46:314–317. doi: 10.1021/jm020997b. [DOI] [PubMed] [Google Scholar]
  • 55.Black SL, Chauvignac C, Grundt P, et al. Guanidino N-substituted and N,N-disubstituted derivatives of the κ-opioid antagonist GNTI. J Med Chem. 2003;46:5505–5511. doi: 10.1021/jm0309203. [DOI] [PubMed] [Google Scholar]
  • 56.Ananthan S, Kezar HS, Saini SK, et al. Synthesis, opioid receptor binding, and functional activity of 5′-subsitituted 17-cycloprop ylmethylpyrido[2′,3′,:6,7]morphinans. Bioorg Med Chem Lett. 2003;13:529–532. doi: 10.1016/S0960-894X(02)00934-4. [DOI] [PubMed] [Google Scholar]
  • 57.Thomas JB, Atkinson RN, Rothman RB, et al. Identification of the firsttrans-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine derivative to possess highly potent and selective opioid κ receptor antagonist activity. J Med Chem. 2001;44:2687–2690. doi: 10.1021/jm015521r. [DOI] [PubMed] [Google Scholar]
  • 58.Zimmerman DM, Leander JD, Cantrell BE, et al. Structure-activity relationships oftrans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine antagonists for μ- and κ-opioid receptors. J Med Chem. 1993;36:2833–2841. doi: 10.1021/jm00072a001. [DOI] [PubMed] [Google Scholar]
  • 59.Thomas JB, Fall MJ, Cooper JB, et al. Identification of an opioid κ receptor subtype-selective N-substituent for (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine. J Med Chem. 1998;41:5188–5197. doi: 10.1021/jm980511k. [DOI] [PubMed] [Google Scholar]
  • 60.Thomas JB, Atkinson RN, Namdev N, et al. Discovery of an opioid κ receptor selective pure antagonist from a library of N-substituted 4β-methyl-5-(3-hydroxyphenyl)morphans. J Med Chem. 2002;45:3524–3530. doi: 10.1021/jm020084h. [DOI] [PubMed] [Google Scholar]
  • 61.Grundt P, Williams IA, Lewis JW, Husbands SM. Identification of a new scaffold for opioid receptor antagonism based on the 2-amino-1, 1-dimethyl-7-hydroxytetralin pharmacophore. J Med Chem. 2004;47:5069–5075. doi: 10.1021/jm040807s. [DOI] [PubMed] [Google Scholar]
  • 62.de Costa BR, Band L, Rothman RB, et al. Synthesis of an affinity ligand (‘UPHIT’) for in vivo acylation of the κ-opioid receptor. FEBS Lett. 1989;249:178–182. doi: 10.1016/0014-5793(89)80619-2. [DOI] [PubMed] [Google Scholar]
  • 63.de Costa BR, Rothman RB, Bykov V, Jacobson AE, Rice KC. Selective and enantiospecific acylation of κ opioid receptors by (1S,2S)-trans-2-isothiocyanato-N-methyl-N-[2-(1-pyrrolidinyl)cyclohecyl]benze neacetamide. Demonstration of κ receptor heterogeneity. J Med Chem. 1989;32:281–283. doi: 10.1021/jm00122a001. [DOI] [PubMed] [Google Scholar]
  • 64.Chang AC, Takemori AE, Portoghese PS. 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl]acet amide: an opioid receptor affinity label that produces selective and long-lasting κ antagonism in mice. J Med Chem. 1994;37:1547–1549. doi: 10.1021/jm00037a001. [DOI] [PubMed] [Google Scholar]
  • 65.Chang AC, Takemori AE, Ojala WH, Gleason WB, Portoghese PS. κ opioid receptor selective affinity labels: electrophilic benzeneacetamides as κ-selective opioid antagonists. J Med Chem. 1994;37:1547–1549. doi: 10.1021/jm00037a001. [DOI] [PubMed] [Google Scholar]
  • 66.Chauvignac C, Miller CN, Srivastava SK, Lewis JW, Husbands SM, Taynor JR. Major effect of pyrrolic N-benzylation in norbinaltorphiminie, the selective κ-opioid receptor antagonist. J Med Chem. 2005;48:1676–1679. doi: 10.1021/jm049172n. [DOI] [PubMed] [Google Scholar]
  • 67.Negus SS, Mello NK, Linsenmayer DC, Jones RM, Portoghese PS. Kappa opioid antagonist effects of the novel kappa antagonist 5′-guanidinonaltrindole (GNTI) in an assay of schedule-controlled behavior in rhesus monkeys. Psychopharmacology (Berlin) 2002;163:412–419. doi: 10.1007/s00213-002-1038-x. [DOI] [PubMed] [Google Scholar]
  • 68.Bertalmio AJ, Woods JH. Differentiation betweenmu andkappa receptor-mediated effects in opioid drug discrimination: apparent pA2 analysis. J Pharmacol Exp Ther. 1987;243:591–597. [PubMed] [Google Scholar]
  • 69.Negus SS, Butelman ER, Chang KJ, DeCosta B, Winger G, Woods JH. Behavioral effects of the systemically activedelta opioid agonist BW373U86 in rhesus monkeys. J Pharmacol Exp Ther. 1994;270:1025–1034. [PubMed] [Google Scholar]
  • 70.Carroll I, Thomas JB, Dykstra LA, et al. Pharmacological properties of JDTic: a novel κ-opioid receptor antagonist. Eur J Pharmacol. 2004;501:111–119. doi: 10.1016/j.ejphar.2004.08.028. [DOI] [PubMed] [Google Scholar]
  • 71.Butelman ER, Negus SS, Ai Y, deCosta BR, Woods JH. Kappa opioid antagonist effects of systemically administered norbinaltorphimine in a thermal antinociception assay in rhesus monkeys. J Pharmacol Exp Ther. 1993;267:1269–1276. [PubMed] [Google Scholar]
  • 72.Endoh T, Matsuura H, Tanaka C, Nagase H. Nor-binaltorphimine: a potent and selective kappa-opioid receptor antagonist with long-lasting activity in vivo. Arch Int Pharmacodyn Ther. 1992;316:30–42. [PubMed] [Google Scholar]
  • 73.Broadbear JH, Negus SS, Butelman ER, de Costa BR, Woods JH. Differential effects of systemically administered nor-binaltorphimine (nor-BNI) on kappa-opioid agonists in the mouse writhing assay. Psychopharmacology (Berlin) 1994;115:311–319. doi: 10.1007/BF02245071. [DOI] [PubMed] [Google Scholar]
  • 74.Ko MCH, Lee H, Song MS, et al. Activation of κ-opioid receptors inhibits pruritus evoked by subcutaneous or intrathecal administration of morphine in monkeys. J Pharmacol Exp Ther. 2003;305:173–179. doi: 10.1124/jpet.102.044909. [DOI] [PubMed] [Google Scholar]
  • 75.Jones DNC, Holtzman SG. Long term kappa opioid receptor blockade following nor-binaltorphimine. Eur J Pharmacol. 1992;215:345–348. doi: 10.1016/0014-2999(92)90055-9. [DOI] [PubMed] [Google Scholar]
  • 76.Horan P, Taylor J, Yamamura HI, Porreca F. Extremely long-lasting antagonistic actions of nor-binaltorphimine (nor-BNI) in the mouse tail-flick test. J Pharmacol Exp Ther. 1992;260:1237–1243. [PubMed] [Google Scholar]
  • 77.Ko MCH, Johnson MD, Butelman ER, Willmont KJ, Mosberg HI, Woods JH. Intracisternal nor-binaltorphimine distinguishes central and peripheral kappa-opioid antinociception in rhesus monkeys. J Pharmacol Exp Ther. 1999;291:1113–1120. [PMC free article] [PubMed] [Google Scholar]
  • 78.Jewett DC, Woods JH. Nor-binaltorphimine: a very, very long acting kappa opioid antagonist in pigeons. Behav Pharmacol. 1995;6:815–820. [PubMed] [Google Scholar]
  • 79.Takemori AE, Ho BY, Naeseth JS, Portoghese PS. Norbinaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther. 1988;246:255–258. [PubMed] [Google Scholar]
  • 80.Takemori AE, Schwartz MM, Portoghese PS. Suppression by norbinaltorphimine ofkappa opioid-mediated diuresis in rats. J Pharmacol Exp Ther. 1988;247:971–974. [PubMed] [Google Scholar]
  • 81.Ko MCH, Willmont KJ, Lee H, Flory GS, Woods JH. Ultra-long antagonism of kappa opioid agonist-induced diuresis by intracisternal nor-binaltorphimine in monkeys. Brain Res. 2003;982:38–44. doi: 10.1016/S0006-8993(03)02938-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Carlezon WA, Thome J, Olson VG, et al. Regulation of cocaine reward by CREB. Science. 1998;282:2272–2275. doi: 10.1126/science.282.5397.2272. [DOI] [PubMed] [Google Scholar]
  • 83.Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlexon WA. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accum bens. J Neurosci. 2001;21:7397–7403. doi: 10.1523/JNEUROSCI.21-18-07397.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.McLaughlin JP, Marton-Popovici M, Chavkin C. κ opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci. 2003;23:5674–5683. doi: 10.1523/JNEUROSCI.23-13-05674.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Berrocoso E, Rojas-Corrales MO, Mico JA. Non-selective opioid receptor antagonism of the antidepressant-like effect of venlafaxine in the forced swimming test in mice. Neurosci Lett. 2004;363:25–28. doi: 10.1016/j.neulet.2004.03.041. [DOI] [PubMed] [Google Scholar]
  • 86.Newton SS, Thome J, Wallace TL, et al. Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accum bens produces an antidepressant-like effect. J Neurosci. 2002;22:10883–10890. doi: 10.1523/JNEUROSCI.22-24-10883.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Shirayama Y, Ishida H, Iwata M, Hazama G, Kawahara R, Duman RS. Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects. J Neurochem. 2004;90:1258–1268. doi: 10.1111/j.1471-4159.2004.02589.x. [DOI] [PubMed] [Google Scholar]
  • 88.Kamei J, Nagase H. Norbinaltorphimine, a selective κ opioid receptor antagonist, induces an itch-associated response in mice. Eur J Pharmacol. 2001;418:141–145. doi: 10.1016/S0014-2999(01)00941-4. [DOI] [PubMed] [Google Scholar]
  • 89.Cowan A, Inan S, Kehner GB. GNTI, a kappa receptor antagonist, causes compulsive scratching in mice. The Pharmacologist. 2002;44:A51–A51. [Google Scholar]
  • 90.Togashi Y, Umeuchi H, Okano K, et al. Antipruritic activity of the κ-opioid receptor agonist, TRK-820. Eur J Pharmacol. 2002;435:259–264. doi: 10.1016/S0014-2999(01)01588-6. [DOI] [PubMed] [Google Scholar]
  • 91.Ko MCH, Lee H, Song MS, et al. Activation of κ-opioid receptors inhibits pruritus evoked by subcutaneous of intrathecal administration of morphine in monkeys. J Pharmacol Exp Ther. 2003;305:173–179. doi: 10.1124/jpet.102.044909. [DOI] [PubMed] [Google Scholar]
  • 92.Umeuchi H, Togashi Y, Honda T, et al. Involvement of central μ-opioid system in the scratching behavior in mice, and the suppression of it by the activation of κ-opioid system. Eur J Pharmacol. 2003;477:29–35. doi: 10.1016/j.ejphar.2003.08.007. [DOI] [PubMed] [Google Scholar]
  • 93.Levine AS, Grace M, Portoghese PS, Billington CJ. The effect of selective opioid antagonists on butorphanol-induced feeding. Brain Res. 1994;637:242–248. doi: 10.1016/0006-8993(94)91239-4. [DOI] [PubMed] [Google Scholar]
  • 94.Cole JL, Berman N, Bodnar RJ. Evaluation of chronic opioid receptor antagonist effects upon weight and intake measures in lean and obese zucker rats. Peptides. 1997;18:1201–1207. doi: 10.1016/S0196-9781(97)00074-0. [DOI] [PubMed] [Google Scholar]
  • 95.Bodnar RJ, Glass MJ, Ragnauth A, Cooper ML. General, μ and κ opioid antagonists in the nucleus accum bens alter food intake under deprivation, glucoprivic and palatable conditions. Brain Res. 1995;700:205–212. doi: 10.1016/0006-8993(95)00957-R. [DOI] [PubMed] [Google Scholar]
  • 96.Leventhal L, Kirkham TC, Cole JL, Bodnar RJ. Selective actions of central μ and κ opioid antagonists upon sucrose intake in sham-fed rats. Brain Res. 1995;685:205–210. doi: 10.1016/0006-8993(95)00385-4. [DOI] [PubMed] [Google Scholar]
  • 97.Khaimova E, Kandov Y, Israel Y, Cataldo G, Hadjimarkou MM, Bodnar RJ. Opioid receptor subtype antagonists differentially alter GABA agonist-induced feeding elicited from either the nucleus accumbens shell or ventral tegmental area regions in rats. Brain Res. 2004;1026:284–294. doi: 10.1016/j.brainres.2004.08.032. [DOI] [PubMed] [Google Scholar]
  • 98.Kotz CM, Grace MK, Billington CJ, Levine AS. The effect of norbinaltorphimine, β-funaltrexamine and naltrindole on NPY-induced feeding. Brain Res. 1993;631:325–328. doi: 10.1016/0006-8993(93)91552-4. [DOI] [PubMed] [Google Scholar]
  • 99.Calcagnetti DJ, Calcagnetti RL, Fanselow MS. Centrally administered opioid antagonists, nor-binaltorphimine, 16-methyl cyprenorphine, and Mr2266, suppress intake of a sweet solution. Pharmacol Biochem Behav. 1990;35:69–73. doi: 10.1016/0091-3057(90)90206-W. [DOI] [PubMed] [Google Scholar]
  • 100.Spanagel R, Shippenberg TS. Modulation of morphine-induced sensitization by endogenous κ opioid systems in the rat. Neurosci Lett. 1993;153:232–236. doi: 10.1016/0304-3940(93)90329-J. [DOI] [PubMed] [Google Scholar]
  • 101.Williams KL, Ko MHC, Rice KC, Woods JH. Effect of opioid receptor antagonists on hypothalamic-pituitary-adrenal activity in rhesus monkeys. Psychoneuroendocrinology. 2003;28:513–528. doi: 10.1016/S0306-4530(02)00037-9. [DOI] [PubMed] [Google Scholar]
  • 102.Narita M, Kishimoto Y, Ise Y, Yajima Y, Misawa K, Suzuki T. Direct evidence for the involvement of the mesolimbic κ-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology. 2005;30:111–118. doi: 10.1038/sj.npp.1300527. [DOI] [PubMed] [Google Scholar]
  • 103.Joynes RL, Grau JW. Instrumental learning within the spinal cord: III. Prior exposure to noncontingent shock induces a behavioral deficit that is blocked by an opioid antagonist. Neurobiol Learn Mem. 2004;82:35–51. doi: 10.1016/j.nlm.2004.04.001. [DOI] [PubMed] [Google Scholar]
  • 104.Cheng HY, Laviolette SR, van der Kooy D, Penninger JM. DREAM ablation selectively alters THC place aversion and analgesia but leaves intact the motivational and analgesic effects of morphine. Eur J Neurosci. 2004;19:3033–3041. doi: 10.1111/j.0953-816X.2004.03435.x. [DOI] [PubMed] [Google Scholar]
  • 105.Mizoguchi H, Leitermann RJ, Narita M, Nagase H, Suzuki T, Tseng LF. Region-dependent G-protein activation by κ-opioid receptor agonists in the mouse brain. Neurosci Lett. 2004;356:145–147. doi: 10.1016/j.neulet.2003.09.034. [DOI] [PubMed] [Google Scholar]
  • 106.Fan L, Tien L, Tanaka S, et al. Enhanced binding of norbinaltorphimine to κ-opioid receptors in rats dependent on butorphanol. J Neurosci Res. 2003;72:781–789. doi: 10.1002/jnr.10578. [DOI] [PubMed] [Google Scholar]
  • 107.Cosentino M, Marino F, DePonti F, et al. Tonic modulation of neurotransmitter release in the guinea-pig myenteric plexus: effect of μ and κ opioid receptor blockade and of chronic sympathetic denervation. Neurosci Lett. 1995;194:185–188. doi: 10.1016/0304-3940(95)11757-N. [DOI] [PubMed] [Google Scholar]
  • 108.Ossipov MH, Kovelowski CJ, Wheeler-Aceto H, et al. Opioid antagonists and antisera to endogenous opioids increase the nociceptive response to formalin: demonstration of an opioidkappa anddelta inhibitory tone. J Pharmacol Exp Ther. 1996;277:784–788. [PubMed] [Google Scholar]
  • 109.Obara I, Mika J, Schafer MK-H, Przewlocka B. Antagonists of the κ-opioid receptor enhance allodynia in rats and mice after sciatic nerve ligation. Br J Pharmacol. 2003;140:538–546. doi: 10.1038/sj.bjp.0705427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Baker AK, Meert TF. Functional effects of systemically administered agonists and antagonists of μ, δ, and κ opioid receptor subtypes on body temperature in mice. J Pharmacol Exp Ther. 2002;302:1253–1264. doi: 10.1124/jpet.102.037655. [DOI] [PubMed] [Google Scholar]
  • 111.Tortella FC, Echevarria E, Lipkowski AW, Takemori AE, Portoghese PS, Holaday JW. Selective kappa antagonist properties of nor-binaltrophimine in the rat seizure model. Life Sci. 1989;44:661–665. doi: 10.1016/0024-3205(89)90470-0. [DOI] [PubMed] [Google Scholar]
  • 112.Manzanares J, Lookingland KJ, LaVigne SD, Moore KE. Activation of tuberohypophysial dopamine neurons following intracerebroventricular administration of the selective kappa opioid receptor antagonist nor-binaltorphimine. Life Sci. 1991;48:1143–1149. doi: 10.1016/0024-3205(91)90451-G. [DOI] [PubMed] [Google Scholar]
  • 113.McIntosh M, Kane K, Parratt J. Effects of selective opioid receptor agonists and antagonists during myocardial ischaemia. Eur J Pharmacol. 1992;210:37–44. doi: 10.1016/0014-2999(92)90649-O. [DOI] [PubMed] [Google Scholar]
  • 114.Llobel F, Laorden ML. Effects of μ-, δ-, and κ-opioid antagonists in atrial preparations from failing human hearts. Gen Pharmacol. 1997;28:371–374. doi: 10.1016/s0306-3623(96)00221-2. [DOI] [PubMed] [Google Scholar]
  • 115.Cao Z, Liu L, VanWinkle DM. Activation of δ- and κ-opioid receptors by opioid peptides protects cardiomyocytes via KATP channels. Am J Physiol Heart Circ Physiol. 2003;285:H1032–H1039. doi: 10.1152/ajpheart.01004.2002. [DOI] [PubMed] [Google Scholar]
  • 116.Carey GJ, Bergman J. Enadoline discrimination in squirrel monkeys: effects of opioid agonists and antagonists. J Pharmacol Exp Ther. 2001;297:215–223. [PubMed] [Google Scholar]
  • 117.Jewett DC, Woods JH. Nor-binaltorphimine: an ultra-long acting kappa-opioid antagonist in pigeons. Behav Pharmacol. 1995;6:815–820. [PubMed] [Google Scholar]
  • 118.Picker MJ, Mathewson C, Allen RM. Opioids and rate of positively reinforced behavior: III. Antagonism by the long-lasting kappa antagonist norbinaltorphimine. Behav Pharmacol. 1996;7:495–504. [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES