Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2007 Jan 5;9(1):E1–E10. doi: 10.1208/aapsj0901001

Dual dopamine/serotonin releasers as potential medications for stimulante and alcohol addictions

Richard B Rothman 1,, Bruce E Blough 2, Michael H Baumann 1
PMCID: PMC2751297  PMID: 17408232

Abstract

We have advocated the idea of agonist therapy for treating cocaine addiction. This strategy involves administration of stimulant-like medications (eg, monoamine releasers) to alleviate withdrawal symptoms and prefent relapse. A major limitation, of this approach is that many candidate medicines possess significant abuse potential because of activation of mesolimbic dopamine (DA) neurons in central nervous system reward circuits. Previous data suggest that serotonin (5-HT) neurons can provide an inhibitory influence over mesolimbic DA neurons. Thus, it might be predicted that the balance between DA and 5-HT transmission is important to consider when developing medications with reduced stimulant side effects. In this article, we discuss several issues related to the development of dual DA/5-HT releasers for the treatment of substance use disorders. First, we discuss evidence supporting the existence of a dual deficit in DA and 5-HT function during withdrawal from chronic cocaine or alcohol abuse. Then we summarize studies that have tested the hypothesis that 5-HT neurons can dampen the effects mediated by mesolimbic DA. For example, it has been shown that pharmacological manipulations that increase extracellular 5-HT attenuate stimulant effects produced by DA release, such as locomotor stimulation and self-administration behavior. Finally, we discuss our recently published data about PAL-287 (naphthylisopropylamine), a novel non-amphetamine DA-/5-HT-releasing agent that suppresses cocaine self-administration but lacks positive reinforcing properties. It is conclude that DA/5-HT releasers might be useful therapeutic adjuncts for the treatment of cocaine and alcohol addiction, obesity, and even attention deficit disorder and depression.

KeyWords: Alcohol, amphetamine, cocaine, dopamine, serotonin, treatment, transporter

Full Text

The Full Text of this article is available as a PDF (977.9 KB).

References

  • 1.Baumann MH, Ayestas MA, Dersch CM, Brockington A, Rice KC, Rothman RB. Effects of phentermine and fenfluramine on extracellular dopamine and serotonin in rat nucleus accumbens: therapeutic implications. Synapse. 2000;36:102–113. doi: 10.1002/(SICI)1098-2396(200005)36:2<102::AID-SYN3>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  • 2.Baumann MH, Ayestas MA, Dersch CM, Rothman RB. 1-(m-Chlorophenyl)piperazine (m CPP) dissociates in vivo serotonin release from long-term serotonin depletion in rat brain. Neuropsychopharmacology. 2001;24:492–501. doi: 10.1016/S0893-133X(00)00221-9. [DOI] [PubMed] [Google Scholar]
  • 3.Rea WP, Rothman RB, Shippenberg TS. Evaluation of the conditioned reinforcing effects of phentermine and fenfluramine in the rat: concordance with clinical studies. Synapse. 1998;30:107–111. doi: 10.1002/(SICI)1098-2396(199809)30:1<107::AID-SYN13>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  • 4.Rothman RB, Baumann MH, Dersch CM, et al. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 2001;39:32–41. doi: 10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  • 5.Rothman RB, Baumann MH. Monoamine transporters and psychostimulant drugs. Eur J Pharmacol. 2003;479:23–40. doi: 10.1016/j.ejphar.2003.08.054. [DOI] [PubMed] [Google Scholar]
  • 6.Rothman RB, Baumann MH. Serotonin releasing agents, Neurochemical, therapeutic and adverse effects. Pharmacol Biochem Behav. 2002;71:825–836. doi: 10.1016/S0091-3057(01)00669-4. [DOI] [PubMed] [Google Scholar]
  • 7.Rothman RB, Blough BE, Woolverton WL, et al. Development of a rationally designed, low abuse potential, biogenic amine releaser that suppresses cocaine self-administration. J Pharmacol Exp Ther. 2005;313:1361–1369. doi: 10.1124/jpet.104.082503. [DOI] [PubMed] [Google Scholar]
  • 8.Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL. Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J Pharmacol Exp Ther. 2005;313:848–854. doi: 10.1124/jpet.104.080101. [DOI] [PubMed] [Google Scholar]
  • 9.Wojnicki FHE, Rothman RB, Rice KC, Glowa JR. Effects of phentermine on responding maintained under multiple fixed-ratio schedules of food and cocaine presentation in the rhesus monkey. J Pharmacol Exp Ther. 1999;288:550–560. [PubMed] [Google Scholar]
  • 10.Castro FG, Barrington EH, Walton MA, Rawson RA. Cocaine and methamphetamine: differential addiction rates. Psyhol Addict Behav. 2000;14:390–396. doi: 10.1037/0893-164X.14.4.390. [DOI] [PubMed] [Google Scholar]
  • 11.Musto DF. Cocaine's history, especially the American experience. Ciba Found Symp. 1992;166:7–14. doi: 10.1002/9780470514245.ch2. [DOI] [PubMed] [Google Scholar]
  • 12.Das G. Cocaine abuse in North America: a milestone in history. J Clin Pharmacol. 1993;33:296–310. doi: 10.1002/j.1552-4604.1993.tb04661.x. [DOI] [PubMed] [Google Scholar]
  • 13.Centers for Disease Control and Prevention (CDC) Increasing morbidity and mortality associated with abuse of metham phetamine—United States, 1991–1994. MMWR Morb Mortal Wkly Rep. 1995;44:882–886. [PubMed] [Google Scholar]
  • 14.Amara SG, Kuhar MJ. Neurotransmitter transporters: recent progress. Annu Rev Neurosci. 1993;16:73–93. doi: 10.1146/annurev.ne.16.030193.000445. [DOI] [PubMed] [Google Scholar]
  • 15.Masson J, Sagne C, Hamon M, Mestikawy S. Neurotransmitter transporters in the central nervous system. Pharmacol Rev. 1999;51:439–464. [PubMed] [Google Scholar]
  • 16.Blakely RD, De Felice LJ, Hartzell HC. Molecular physiology of norepinephrine and serotonin transporters. J Exp Biol. 1994;196:263–281. doi: 10.1242/jeb.196.1.263. [DOI] [PubMed] [Google Scholar]
  • 17.Uhl GR, Johnson PS. Neurotransmitter transporters: three important gene families for neuronal function. J Exp Biol. 1994;196:229–236. doi: 10.1242/jeb.196.1.229. [DOI] [PubMed] [Google Scholar]
  • 18.Amara SG, Sonders MS. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend. 1998;51:87–96. doi: 10.1016/S0376-8716(98)00068-4. [DOI] [PubMed] [Google Scholar]
  • 19.Rudnick G, Clark J. From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim Biophys Acta. 1993;1144:249–263. doi: 10.1016/0005-2728(93)90109-S. [DOI] [PubMed] [Google Scholar]
  • 20.Rudnick G. Mechanisms of biogenic amine transporters. In: Reith MEA, editor. Neurotransmitter Transporters: Structure, Function and, Regulation. Totowa, NJ: Humana Press; 1997. pp. 73–100. [Google Scholar]
  • 21.Blakely RD, Defelice LJ, Galli A. Biogenic amine neurotransmitter transporters: just when you thought you knew them. Physiology (Bethesda) 2005;20:225–231. doi: 10.1152/physiol.00013.2005. [DOI] [PubMed] [Google Scholar]
  • 22.Sitte HH, Freissmuth M. Oligomer formation by Na+-Cl-coupled neurotransmitter transporters. Eur J Pharmacol. 2003;479:229–236. doi: 10.1016/j.ejphar.2003.08.072. [DOI] [PubMed] [Google Scholar]
  • 23.Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol. 2005;75:406–433. doi: 10.1016/j.pneurobio.2005.04.003. [DOI] [PubMed] [Google Scholar]
  • 24.Alexander M, Rothman RB, Baumann MH, Endres CJ, Brasic JR, Wong DF. Noradrenergic and dopaminergic effects of(+)-amphetamine-like stimulants in the baboon Papio anubis. Synapse. 2005;56:94–99. doi: 10.1002/syn.20126. [DOI] [PubMed] [Google Scholar]
  • 25.Koob GF. Alcoholism: allostasis and beyond. Alcohol Clin Exp Res. 2003;27:232–243. doi: 10.1097/01.ALC.0000057122.36127.C2. [DOI] [PubMed] [Google Scholar]
  • 26.Volkow ND, Li TK. Drug addiction: the neurobiology of behaviour gone awry. Nat Rev Neurosci. 2004;5:963–970. doi: 10.1038/nrn1539. [DOI] [PubMed] [Google Scholar]
  • 27.Hyman SE. Addiction: a disease of learning and memory. Am J Psychiatry. 2005;162:1414–1422. doi: 10.1176/appi.ajp.162.8.1414. [DOI] [PubMed] [Google Scholar]
  • 28.Weiss F, Parsons LH, Schulteis G, et al. Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci. 1996;16:3474–3485. doi: 10.1523/JNEUROSCI.16-10-03474.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Parsons LH, Koob GF, Weiss F. Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exp Ther. 1995;274:1182–1191. [PubMed] [Google Scholar]
  • 30.Baumann MH, Rothman RB. Alterations in serotonergic responsiveness during cocaine withdrawal in rats: similarities to major depression in humans. Biol Psychiatry. 1998;44:578–591. doi: 10.1016/S0006-3223(98)00123-1. [DOI] [PubMed] [Google Scholar]
  • 31.Dackis CA, Gold MS. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev. 1985;9:469–477. doi: 10.1016/0149-7634(85)90022-3. [DOI] [PubMed] [Google Scholar]
  • 32.Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric, diagnosis in cocaine abusers. Arch Gen Psychiatry. 1986;43:107–113. doi: 10.1001/archpsyc.1986.01800020013003. [DOI] [PubMed] [Google Scholar]
  • 33.Garlow SJ, Purselle D, D'Orio B. Cocaine use disorders and suicidal ideation. Drug Alcohol Depend. 2003;70:101–104. doi: 10.1016/S0376-8716(02)00337-X. [DOI] [PubMed] [Google Scholar]
  • 34.Mann JJ. Neurobiology of suicidal behaviour. Nat Rev Neurosci. 2003;4:819–828. doi: 10.1038/nrn1220. [DOI] [PubMed] [Google Scholar]
  • 35.Lesch KP. Alcohol dependence and gene x environment interaction in emotion regulation: is serotonin the link? Eur J Pharmacol. 2005;526:113–124. doi: 10.1016/j.ejphar.2005.09.027. [DOI] [PubMed] [Google Scholar]
  • 36.Rothman RB, Elmer GI, Shippenberg TS, Rea W, Baumann MH. Phentermine and fenfluramine: preclinical studies in animal models of cocaine addiction. Ann NY Acad Sci. 1998;844:59–74. doi: 10.1111/j.1749-6632.1998.tb08222.x. [DOI] [PubMed] [Google Scholar]
  • 37.Baumann MH, Rothman RB. Serotonergic dysfunction during cocaine withdrawal: implications for cocaine-induced depression. In: Karch SB, editor. Drug Abuse Handbook. Boca Raton, FL: CRC Press; 1998. pp. 463–484. [Google Scholar]
  • 38.Lin D, Koob GF, Markou A. Differential effects of withdrawal from chronic amphetamine or fluoxetine administration, on brain stimulation reward in the rat—interactions between the two drugs. Psychopharmacology (Berl) 1999;145:283–294. doi: 10.1007/s002130051060. [DOI] [PubMed] [Google Scholar]
  • 39.Markou A, Koob GF. Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology. 1991;4:17–26. [PubMed] [Google Scholar]
  • 40.Levy AD, Baumann MH, Van de Kar LD. Monoaminergic regulation of neuroendocrine function and its modification by cocaine. Front Neuroendocrinol. 1994;15:85–156. doi: 10.1006/frne.1994.1006. [DOI] [PubMed] [Google Scholar]
  • 41.Yu YL, Fisher H, Sekowski A, Wagner GC. Amphetamine and fenfluramine suppress ethanol intake in ethanol-dependent rats. Alcohol. 1997;14:45–48. doi: 10.1016/S0741-8329(96)00110-3. [DOI] [PubMed] [Google Scholar]
  • 42.Halladay AK, Wagner GC, Hsu T, Sekowski A, Fisher H. Differential effects of monoaminergic agonists on alcohol intake in rats fed a tryptophan-enhanced diet. Alcohol. 1999;18:55–64. doi: 10.1016/S0741-8329(98)00068-8. [DOI] [PubMed] [Google Scholar]
  • 43.Hitzig P. Combined dopamine and serotonin agonists: a synergistic approach to alcoholism and other addictive behaviors. Md Med J. 1993;42:153–157. [PubMed] [Google Scholar]
  • 44.Rothman RB, Gendron TM, Hitzig P. Combined use of fenfluramine and phentermine in the treatment of cocaine addiction: a pilot case series. J Subst Abuse Treat. 1994;11:273–275. doi: 10.1016/0740-5472(94)90086-8. [DOI] [PubMed] [Google Scholar]
  • 45.Glowa JR, Wojnicki FHE, Matecka D, Rice KC, Rothman RB. Effects of dopamine reuptake inhibitors on food- and cocaine-maintained responding, II: comparisons with other drugs and repeated administrations. Exp Clin Psychopharmacol. 1995;3:232–239. doi: 10.1037/1064-1297.3.3.232. [DOI] [Google Scholar]
  • 46.Negus SS, Mello NK. Effects of chronic d-amphetamine treatment on cocaine- and food-maintained responding under a progressive-ratio schedule in rhesus monkeys. Psychopharmacology (Berl) 2003;167:324–332. doi: 10.1007/s00213-003-1409-y. [DOI] [PubMed] [Google Scholar]
  • 47.Grabowski J, Shearer J, Merrill J, Negus SS. Agonist-like, replacement pharmacotherapy for stimulant abuse and dependence. Addict Behav. 2004;29:1439–1464. doi: 10.1016/j.addbeh.2004.06.018. [DOI] [PubMed] [Google Scholar]
  • 48.Rothman RB, Blough BE, Baumann MH. Appetite suppressants as agonist substitution therapies for stimulant dependence. Ann NY Acad Sci. 2002;965:109–126. doi: 10.1111/j.1749-6632.2002.tb04155.x. [DOI] [PubMed] [Google Scholar]
  • 49.McGregor A, Lacosta S, Roberts DC. L-tryptophan decreases the breaking point under a progressive ratio schedule of intravenous cocaine reinfor cement in the rat. Pharmacol Biochem Behav. 1993;44:651–655. doi: 10.1016/0091-3057(93)90181-R. [DOI] [PubMed] [Google Scholar]
  • 50.Smith FL, Yu DS, Smith DG, Leccese AP, Lyness WH. Dietary tryptophan supplements attenuate amphetamine self-administration in the rat. Pharmacol Biochem Behav. 1986;25:849–855. doi: 10.1016/0091-3057(86)90397-7. [DOI] [PubMed] [Google Scholar]
  • 51.Glowa JR, Rice KC, Matecka D, Rothman RB. Phentermine/fenfluramine decreases cocaine self-administration in rhesus monkeys. Neuroreport. 1997;8:1347–1351. doi: 10.1097/00001756-199704140-00006. [DOI] [PubMed] [Google Scholar]
  • 52.Glatz AC, Ehrlich M, Bae RS, et al. Inhibition of cocaine self-administration by fluoxetine or D-fenfluramine combined with phentermine. Pharmacol Biochem Behav. 2002;71:197–204. doi: 10.1016/S0091-3057(01)00657-8. [DOI] [PubMed] [Google Scholar]
  • 53.Burmeister JJ, Lungren EM, Neisewander JL. Effects of fluoxetine and d-fenfluramine on cocaine-seeking behavior in rats. Psychopharmacology (Berl) 2003;168:146–154. doi: 10.1007/s00213-002-1307-8. [DOI] [PubMed] [Google Scholar]
  • 54.Buydens-Branchey L, Branchey M, Hudson J, Rothman M, Fergeson P, McKernin C. Effect of fenfluramine challenge on cocaine craving in addicted male users. Am J Addict. 1998;7:142–155. doi: 10.3109/10550499809034486. [DOI] [PubMed] [Google Scholar]
  • 55.Halladay AK, Wagner GC, Sekowski A, Rothman RB, Baumann MH, Fisher H. Alterations in alcohol consumption, withdrawal seizures, and monoamine transmission in rats treated with phentermine and 5-hydroxy-L-tryptophan. Synapse. 2006;59:277–289. doi: 10.1002/syn.20239. [DOI] [PubMed] [Google Scholar]
  • 56.Gorelick DA. The rate hypothesis and agonist substitution approaches to cocaine abuse treatment. Adv Pharmacol. 1998;42:995–997. doi: 10.1016/S1054-3589(08)60914-X. [DOI] [PubMed] [Google Scholar]
  • 57.Henningfield JE. Nicotine medications for smoking cessation. N Engl J Med. 1995;333:1196–1203. doi: 10.1056/NEJM199511023331807. [DOI] [PubMed] [Google Scholar]
  • 58.Kreek MJ. Opiates, opioids, and addiction. Mol Psychiatry. 1996;1:232–254. [PubMed] [Google Scholar]
  • 59.Ling W, Rawson RA, Compton MA. Substitution pharmacotherapies for opioid addiction: from methadone to LAAM and buprenorphine. J Psychoactive Drugs. 1994;26:119–128. doi: 10.1080/02791072.1994.10472259. [DOI] [PubMed] [Google Scholar]
  • 60.Grabowski J, Roache JD, Schmitz JM, Rhoades H, Creson D, Korszun A. Replacement medication for cocaine dependence: methylphenidate. J Clin Psychopharmacol. 1997;17:485–488. doi: 10.1097/00004714-199712000-00008. [DOI] [PubMed] [Google Scholar]
  • 61.Grabowski J, Rhoades H, Schmitz J, et al. Dextroamphetamine for cocaine-dependence treatment: a double-blind randomized clinical trial. J Clin Psychopharmacol. 2001;21:522–526. doi: 10.1097/00004714-200110000-00010. [DOI] [PubMed] [Google Scholar]
  • 62.Kampman KM, Rukstalis M, Pettinati H, et al. The combination of phentermine and fenfluramine reduced cocaine withdrawal symptoms in an open trial. J Subst Abuse Treat. 2000;19:77–79. doi: 10.1016/S0740-5472(99)00076-8. [DOI] [PubMed] [Google Scholar]
  • 63.Walsh SL, Haberny KA, Bigelow GE. Modulation of intravenous cocaine effects by chronic oral cocaine in humans. Psychopharmacology (Berl) 2000;150:361–373. doi: 10.1007/s002130000439. [DOI] [PubMed] [Google Scholar]
  • 64.Alim TN, Rosse RB, Vocci FJ, Lindquist T, Deutsch SI. Diethylpropion pharmacotherapeutic adjuvant therapy for inpatient treatment of cocaine dependence: a test of the cocaine-agonist hypothesis. Clin Neuropharmacol. 1995;18:183–195. doi: 10.1097/00002826-199504000-00009. [DOI] [PubMed] [Google Scholar]
  • 65.Daw ND, Kakade S, Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw. 2002;15:603–616. doi: 10.1016/S0893-6080(02)00052-7. [DOI] [PubMed] [Google Scholar]
  • 66.Burmeister JJ, Lungren EM, Kirschner KF, Neisewander JL. Differential roles of 5-HT receptor subtypes in cue and cocaine reinstatement of cocaine-seeking behavior in rats. Neuropsychopharmacology. 2004;29:660–668. doi: 10.1038/sj.npp.1300346. [DOI] [PubMed] [Google Scholar]
  • 67.Carroll ME, Lac ST, Asencio M, Kragh R. Fluoxetine reduces intravenous cocaine self-administration in rats. Pharmacol Biochem Behav. 1990;35:237–244. doi: 10.1016/0091-3057(90)90232-7. [DOI] [PubMed] [Google Scholar]
  • 68.Howell LL, Byrd LD. Serotonergic modulation of the behavioral effects of cocaine in the squirrel monkey. J Pharmacol Exp Ther. 1995;275:1551–1559. [PubMed] [Google Scholar]
  • 69.Roberts DC, Phelan R, Hodges LM, et al. Self-administration of cocaine analogs by rats. Psychopharmacology (Berl) 1999;144:389–397. doi: 10.1007/s002130051022. [DOI] [PubMed] [Google Scholar]
  • 70.Higgins GA, Fletcher PJ. Serotonin and drug reward: focus on 5-HT2C receptors. Eur J Pharmacol. 2003;480:151–162. doi: 10.1016/j.ejphar.2003.08.102. [DOI] [PubMed] [Google Scholar]
  • 71.Rothman RB, Baumann M. Therapeutic and adverse actions of serotonin transporter substrates. Pharmacol Ther. 2002;95:73–88. doi: 10.1016/S0163-7258(02)00234-6. [DOI] [PubMed] [Google Scholar]
  • 72.Connolly HM, McGoon MD. Obesity drugs and the heart. Curr Probl Cardiol. 1999;24:745–792. doi: 10.1016/S0146-2806(99)90013-0. [DOI] [PubMed] [Google Scholar]
  • 73.Fitzgerald LW, Burn TC, Brown BS, et al. Possible role of valvular serotonin 5-HT2B receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol. 2000;57:75–81. [PubMed] [Google Scholar]
  • 74.Rothman RB, Baumann MH, Savage JE, et al. Evidence for possible involvement of 5-HT2B receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation. 2000;102:2836–2841. doi: 10.1161/01.cir.102.23.2836. [DOI] [PubMed] [Google Scholar]
  • 75.Setola V, Hufeisen SJ, Grande-Allen KJ, et al. 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol. 2003;63:1223–1229. doi: 10.1124/mol.63.6.1223. [DOI] [PubMed] [Google Scholar]
  • 76.Nichols DE, Brewster WK, Johnson MP, Oberlender R, Riggs RM. Nonneurotoxic tetralin and indan analogues of 3,4-(methylenedioxy) amphetamine (MDA) J Med Chem. 1990;33:703–710. doi: 10.1021/jm00164a037. [DOI] [PubMed] [Google Scholar]
  • 77.Launay JM, Herve P, Peoc'h K, et al. Fuction of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertesion. Nat Med. 2002;8:1129–1135. doi: 10.1038/nm764. [DOI] [PubMed] [Google Scholar]
  • 78.Gurtner HP. Aminorex and pulmonary hypertension. Cor Vasa. 1985;27:160–171. [PubMed] [Google Scholar]
  • 79.Rothman RB, Baumann MH. Neurochemical mechanisms of phentermine and fenfluramine: therapeutic and adverse effects. Drug Dev Res. 2000;51:52–65. doi: 10.1002/1098-2299(200010)51:2<52::AID-DDR2>3.0.CO;2-H. [DOI] [Google Scholar]
  • 80.Vickers SP, Clifton PG, Dourish CT, Tecott LH. Reduced satiating effect of d-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology (Berl) 1999;143:309–314. doi: 10.1007/s002130050952. [DOI] [PubMed] [Google Scholar]
  • 81.Czoty PW, Ginsburg BC, Howell LL. Serotonergic attenuation of the reinforcing and neurochemical effects of cocaine in squirrel monkeys. J Pharmacol Exp Ther. 2002;300:831–837. doi: 10.1124/jpet.300.3.831. [DOI] [PubMed] [Google Scholar]
  • 82.Michelakis ED, Weir EK. Anorectic drugs and pulmonary hypertension from the bedside to the bench. Am J Med Sci. 2001;321:292–299. doi: 10.1097/00000441-200104000-00009. [DOI] [PubMed] [Google Scholar]
  • 83.Negus SS, Mello NK. Effects of chronic d-amphetamine treatment on cocaine- and food-maintained responding under a second-order schedule in rhesus monkeys. Drug Alcohol Depend. 2003;70:39–52. doi: 10.1016/S0376-8716(02)00339-3. [DOI] [PubMed] [Google Scholar]
  • 84.Grabowski J, Rhoades H, Stotts A, et al. Agonist-like or antagonist-like treatment for cocaine dependence with methadone for heroin dependence: two double-blind randomized clinical trials. Neuropsychopharmacology. 2004;29:969–981. doi: 10.1038/sj.npp.1300392. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES