Abstract
Intracellular free H+ concentration (pHi) responds to numerous extracellular stimuli. The use of fluorescent indicator dyes to measure pHi is strongly influenced by the ability of target cells to retain activated dye within the cytoplasmic compartment. Here, 3 pH-sensitive indicator dyes—acetoxymethyl (AM) esters of SNARF-1 and BCECF, and the thiol-reactive 5-chloromethyfluorescein (CMFDA)—were examined for monitoring pHi. The stability of pH measurements was strongly affected by temperature, cell type, indicator dye, and use of transport inhibitors to prevent dye export. Cellular retention of CMFDA, which forms covalent complexes, was sufficient to permit monitoring of transient pHi changes over extended time periods in a multi-well plate assay format. In human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells, increasing osmotic pressure caused a significant rise in pHi. In contrast, activation of native or transfected β-adrenergic, cholinergic, and d and m opioid receptors did not measurably affect pHi in HEK293 cells. Decreases in pHi were observed in CHO cells expressing the human H+/peptide transporter PEPT1 upon addition of dipeptide substrates. The use of CMFDA in multi-well formats should facilitate study of osmotic and transport activity and screening for drugs that affect pHi.
Keywords: intracellular pH, fluorescent pH-sensitive, dyes, Chinese hamster ovary cells, human embryonic, kidney cells, human colon adrenocarcinoma cells, hypertonic stress
References
- 1.Grant RL, Acosta D. Interactions of intracellular pH and intracellular calcium in primary cultures of rabbit corneal epithelial cells. In Vitro Cell Dev Biol-Animal. 1996;32:38–45. doi: 10.1007/BF02722992. [DOI] [PubMed] [Google Scholar]
- 2.Grant RL, Acosta D. Ratiometric measurement of intracellular pH and of cultured cells with BCECF in a fluorescence multi-well plate reader. In Vitro Cell Dev Biol-Animal. 1997;33:256–260. doi: 10.1007/s11626-997-0044-z. [DOI] [PubMed] [Google Scholar]
- 3.Ela C, Barg J, Vogel Z, Hasin Y, Eilam Y. Distinct components of morphine effects on cardiac myocytes are mediated by the k and d opioid receptors. Mol Cell Cardiol. 1997;29:711–720. doi: 10.1006/jmcc.1996.0313. [DOI] [PubMed] [Google Scholar]
- 4.Grinstein S, Goetz JD. Control of free cytoplasmic calcium by intracellular pH in rat lymphocytes. Biochim Biophys Acta. 1985;819:267–270. doi: 10.1016/0005-2736(85)90183-X. [DOI] [PubMed] [Google Scholar]
- 5.Gambassi G, Spurgeon HA, Ziman BD, Lakatta EG, Capogrossi MC. Opposing effects of a 1-adrenergic receptor subtypes on Ca2+ and pH homeostasis in rat cardiac myocytes. Am J Physiol. 1998;274:H1152–H1162. doi: 10.1152/ajpheart.1998.274.4.H1152. [DOI] [PubMed] [Google Scholar]
- 6.Martinez-Zaguilan R, Martinez GM, Lattanzio F, Gillies RJ. Simultaneous measurement of intracellular pH and Ca2+ using the fluorescence of SNARF-1 and fura-2. Am J Physiol. 1991;260:C297–C307. doi: 10.1152/ajpcell.1991.260.2.C297. [DOI] [PubMed] [Google Scholar]
- 7.Lin K, Sadée S, Quillan JM. Rapid measurements of intracellular calcium using a fluorescence plate reader. BioTech. 1999;26:318–322. doi: 10.2144/99262rr02. [DOI] [PubMed] [Google Scholar]
- 8.Sadée W, Drübbisch V, Amidon GL. Biology of membrane transport proteins. Pharm Res. 1995;12:1823–1837. doi: 10.1023/A:1016211015926. [DOI] [PubMed] [Google Scholar]
- 9.Fei YJ, Kanai Y, Nussberger S, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994;368:563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
- 10.Covitz KM, Amidon GL, Sadée W. Human dipeptide transporter, hPEPT1, stably transfected into Chinese hamster ovary cells. Pharm Res. 1996;13:1631–1634. doi: 10.1023/A:1016476220296. [DOI] [PubMed] [Google Scholar]
- 11.Chen Y, Mestek A, Liu J, Hurley JA, Yu L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol. 1993;441:8–12. [PubMed] [Google Scholar]
- 12.Maeda S, Lameh J, Mallet WG, Philip M, Ramachandran J, Sadée W. Internalization of the Hm1 muscarinic cholinergic receptor involves the third cytoplasmic loop. FEBS Lett. 1990;2692:386–388. doi: 10.1016/0014-5793(90)81199-X. [DOI] [PubMed] [Google Scholar]
- 13.Rink TJ, Tsien RY, Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982;95:189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Thomas JA, Buchsbaum RN, Zimniak A, Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochem. 1979;18:2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- 15.Collington GK, Hunter J, Allen CN, Simmons NL, Hirst BH. Polarized efflux of 2—,7—bis(2-carboxyethyl)-5(6)-carboxyfluorescein from cultured epithelial cell monolayers. Biochem Pharmacol. 1992;44:417–424. doi: 10.1016/0006-2952(92)90431-H. [DOI] [PubMed] [Google Scholar]
- 16.Brezden CB, Hedley DW, Rauth AM. Constitutive expression of P-glycoprotein as a determinant of loading with fluorescent calcium probes. Cytometry. 1994;17:343–348. doi: 10.1002/cyto.990170411. [DOI] [PubMed] [Google Scholar]
- 17.Gutmann H, Fricker G, Török M, Michael S, Beglinger C, Drewe J. Evidence for different ABC-transporters in Caco-2 cells modulating drug uptake. Pharm Res. 1999;16:402–407. doi: 10.1023/A:1018825819249. [DOI] [PubMed] [Google Scholar]
- 18.Osypiw JC, Gleeson D, Lobley RW, Pemberton PW, McMahon RF. Acid-base transport systems in a polarized human intestinal cell monolayer: Caco-2. Exp Physiol. 1994;79:723–739. doi: 10.1113/expphysiol.1994.sp003803. [DOI] [PubMed] [Google Scholar]
- 19.Désilets M, Pucéat M, Vassort G. Chloride dependence of pH modulation by b-adrenergic agonist in rat cardiomyocytes. Circ Res. 1994;75:862–869. doi: 10.1161/01.res.75.5.862. [DOI] [PubMed] [Google Scholar]
- 20.Amlal H, Wang Z, Burnham C, Soleimani M. Functional characterization of a cloned human kidney Na+:HCO3- cotransporter. J Biol Chem. 1998;273:16810–16815. doi: 10.1074/jbc.273.27.16810. [DOI] [PubMed] [Google Scholar]
- 21.Grinstein S, Dixon SJ. Ion transport, membrane potential, and cytoplasmic pH in lymphocytes: changes during activation. Physiol Reviews. 1989;69:417–481. doi: 10.1152/physrev.1989.69.2.417. [DOI] [PubMed] [Google Scholar]
- 22.Liang R, Fei YJ, Prasad PD, et al. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal location. J Biol Chem. 1995;270:6456–6463. doi: 10.1074/jbc.270.12.6456. [DOI] [PubMed] [Google Scholar]
- 23.Reusch HP, Lowe J, Ives HE. Osmotic activation of a Na+-dependent Cl-/HCO3-exchanger. Am J Physiol. 1995;268:C147–C153. doi: 10.1152/ajpcell.1995.268.1.C147. [DOI] [PubMed] [Google Scholar]
- 24.Escobales N, Longo E, Cragoe EJ, Raju Danthuluri N, Brock TA. Osmotic activation of Na+/H+ exchange in human endothelial cells. Am J Physiol. 1990;259:C640–C646. doi: 10.1152/ajpcell.1990.259.4.C640. [DOI] [PubMed] [Google Scholar]
- 25.Winkel GK, Sardet C, Pouyssegur J, Ives HE. Role of cytoplasmic domain of the Na+/H+ exchanger in hormonal activation. J Biol Chem. 1993;268:3396–3400. [PubMed] [Google Scholar]
- 26.Watson AJ, Levine S, Donowitz M, Montrose MH. Kinetics and regulation of a polarized Na+-H+ exchanger from Caco-2 cells, a human intestinal cell line. Am J Physiol. 1991;261:G229–G238. doi: 10.1152/ajpgi.1991.261.2.G229. [DOI] [PubMed] [Google Scholar]
- 27.Jiang T, Steinberg SF. b2-adrenergic receptors enhance contractility by stimulating HCO3-dependent intracellular alkalinization. Am J Physiol. 1997;273:H1044–H1047. doi: 10.1152/ajpheart.1997.273.2.H1044. [DOI] [PubMed] [Google Scholar]
- 28.Maouyo D, Chu S, Montrose MH. pH heterogeneity at intracellular and extracellular plasma membrane sites in HT29-C1 cell monolayers. Am J Physiol Cell Physiol. 2000;278:C973–81. doi: 10.1152/ajpcell.2000.278.5.C973. [DOI] [PubMed] [Google Scholar]
- 29.Matteucci E, Giampietro O. Sodium/hydrogen exchange activity in type 1 diabetes mellitus: the never-ending story. Diabetes Nutr Metab. 2001;14:225–33. [PubMed] [Google Scholar]