Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 Oct 27;8(4):E672–E681. doi: 10.1208/aapsj080477

Insights into the effects of hyperlipoproteinemia on cyclosporine A biodistribution and relationship to renal function

Hamidreza Montazeri Aliabadi 1, Tara J Spencer 1, Parvin Mahdipoor 1, Afsaneh Lavasanifar 1, Dion R Brocks 1,
PMCID: PMC2751364  PMID: 17233531

Abstract

The purpose of this study was to assess the effect of hyperlipoproteinemia on the biodistribution of cyclosporine A (CyA), an extensively lipoprotein bound immunosuppressant, in a rat model and to determine the potential toxicological significance of this effect. Normolipidemic and hyperlipoproteinemic rats were given a single 5 mg/kg dose of CyA as intravenous bolus and at selected times postdose, tissues, blood, and plasma were harvested and assayed for CyA content. Hyperlipoproteinemia was induced by intraperitoneal injection of 1 g/kg poloxamer 407. Compared with normolipidemic animals, hyperlipoproteinemic rats had higher plasma, blood, kidney, and liver CyA concentrations. In contrast, in heart and spleen the concentrations were decreased in hyperlipoproteinemia. The nephrotoxic effect of CyA was also evaluated in normolipidemic and hyperlipoproteinemic rats after 7 days of dosing with 20 mg/kg/day. In both groups of animals, repeated doses of CyA were associated with equivalent decreases in creatinine and urea clearances compared with matching control and predose baseline measures. The concentrations of drug in kidney were equivalent at the conclusion of the study. However, despite these similarities there was microscopic evidence of more severe changes in the kidneys in the hyperlipoproteinemic rats, which also experienced a significant decrease in body weight compared with the normolipedemic animals. In conclusion, the distribution of CyA to kidneys was enhanced in poloxamer 407-induced hyperlipoproteinemic rats after single doses, and with repeated doses there was an apparent greater adverse effect on these animals compared with normolipidemic animals.

Keywords: Biodistribution, hyperlipoproteinemia, protein binding, nephrotoxicity

Full Text

The Full Text of this article is available as a PDF (322.1 KB).

References

  • 1.Kapturczak MH, Meier-Kriesche HU, Kaplan B. Pharmacology of calcineurin antagonists. Transplant Proc. 2004;36:S25–S32. doi: 10.1016/j.transproceed.2004.01.018. [DOI] [PubMed] [Google Scholar]
  • 2.Kahan BD. Cyclosporine. N Engl J Med. 1989;321:1725–1738. doi: 10.1056/NEJM198912213212507. [DOI] [PubMed] [Google Scholar]
  • 3.Calne RY, White DJ, Thiru S, et al. Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet. 1978;2:1323–1327. doi: 10.1016/S0140-6736(78)91970-0. [DOI] [PubMed] [Google Scholar]
  • 4.Bennett WM. Renal effects of cyclosporine. J Am Acad Dermatol. 1990;23:1280–1285. doi: 10.1016/0190-9622(90)70355-l. [DOI] [PubMed] [Google Scholar]
  • 5.Padi SSV, Chopra K. Selective angiotensin II type 1 receptor blockade ameliorates cyclosporine nephrotoxicity. Pharmacol Res. 2002;45:413–420. doi: 10.1006/phrs.2002.0959. [DOI] [PubMed] [Google Scholar]
  • 6.Stroes E, Luscher TF, de Groot FG, Koomans HA, Rabelink TJ. Cyclosporine increases nitric oxide activity in vivo. Hypertension. 1997;29:570–575. doi: 10.1161/01.hyp.29.2.570. [DOI] [PubMed] [Google Scholar]
  • 7.Mun KC. Effect of epigallocatechin gallate on renal function in cyclosporine-induced nephrotoxicity. Transplant Proc. 2004;36:2133–2134. doi: 10.1016/j.transproceed.2004.08.020. [DOI] [PubMed] [Google Scholar]
  • 8.Parra Cid T, Conejo Garcia JR, Carballo Alvarez F, de Arriba G. Antioxidant nutrients protect against cyclosporine A nephrotoxicity. Toxicology. 2003;189:99–111. doi: 10.1016/S0300-483X(03)00156-2. [DOI] [PubMed] [Google Scholar]
  • 9.Hong F, Lee J, Piao YJ, et al. Transgenic mice overexpressing cyclophilin A are resistant to cyclosporin A-induced nephrotoxicity via peptidyl-prolyl cis-trans isomerase activity. Biochem Biophys Res Commun. 2004;316:1073–1080. doi: 10.1016/j.bbrc.2004.02.160. [DOI] [PubMed] [Google Scholar]
  • 10.Satyanarayana PS, Chopra K. Oxidative stress-mediated renal dysfunction by cyclosporine A in rats: attenuation by trimetazidine. Ren Fail. 2002;24:259–274. doi: 10.1081/JDI-120005360. [DOI] [PubMed] [Google Scholar]
  • 11.Bobadilla NA, Gamba G, Tapia E, et al. Role of NO in cyclosporin nephrotoxicity: effects of chronic NO inhibition and NO synthases gene expression. Am J Physiol. 1998;274:F791–F798. doi: 10.1152/ajprenal.1998.274.4.F791. [DOI] [PubMed] [Google Scholar]
  • 12.Shihab FS, Andoh TF, Tanner AM, Yi H, Bennett WM. Expression of apoptosis regulatory genes in chronic cyclosporine nephrotoxicity favors apoptosis. Kidney Int. 1999;56:2147–2159. doi: 10.1046/j.1523-1755.1999.00794.x. [DOI] [PubMed] [Google Scholar]
  • 13.Shihab FS, Bennett WM, Isaac J, Yi H, Andoh TF. Nitric oxide modulates vascular endothelial growth factor and receptors in chronic cyclosporine nephrotoxicity. Kidney Int. 2003;63:522–533. doi: 10.1046/j.1523-1755.2003.00757.x. [DOI] [PubMed] [Google Scholar]
  • 14.Lensmeyer GL, Wiebe DA, Carlson IH, Subramanian R. Concentrations of cyclosporin A and its metabolites in human tissues postmortem. J Anal Toxicol. 1991;15:110–115. doi: 10.1093/jat/15.3.110. [DOI] [PubMed] [Google Scholar]
  • 15.Thomson AW. Cyclosporin: Mode of Action and Clinical Application. Lancaster, UK: Kluwer Academic Publishers; 1989. [Google Scholar]
  • 16.Legg B, Rowland M. Cyclosporin: measurement of fraction unbound in plasma. J Pharm Pharmacol. 1987;39:599–603. doi: 10.1111/j.2042-7158.1987.tb03436.x. [DOI] [PubMed] [Google Scholar]
  • 17.Brocks DR, Ala S, Aliabadi HM. The effect of increased lipoprotein levels on the pharmacokinetics of cyclosporine A in the laboratory rat. Biopharm Drug Dispos. 2006;27:7–16. doi: 10.1002/bdd.476. [DOI] [PubMed] [Google Scholar]
  • 18.Wasan KM, Cassidy SM. Role of plasma lipoproteins in modifying the biological activity of hydrophobic drugs. J Pharm Sci. 1998;87:411–424. doi: 10.1021/js970407a. [DOI] [PubMed] [Google Scholar]
  • 19.Wasan KM, Pritehard PH, Ramaswamy M, Wong W, Donnachie EM, Brunner LJ. Differences in lipoprotein lipid concentration and composition modify the plasma distribution of cyclosporine. Pharm Res. 1997;14:1613–1620. doi: 10.1023/A:1012190620854. [DOI] [PubMed] [Google Scholar]
  • 20.Gupta SK, Benet LZ. High-fat meals increase the clearance of cyclosporine. Pharm Res. 1990;7:46–48. doi: 10.1023/A:1015831408425. [DOI] [PubMed] [Google Scholar]
  • 21.Gupta SK, Manfro RC, Tomlanovich SJ, Gambertoglio JG, Garovoy MR, Benet LZ. Effect of food on the pharmacokinetics of cyclosporine in healthy subjects following oral and intravenous administration. J Clin Pharmacol. 1990;30:643–653. doi: 10.1002/j.1552-4604.1990.tb01868.x. [DOI] [PubMed] [Google Scholar]
  • 22.Johnston TP, Palmer WK. Mechanism of poloxamer 407-induced hypertriglyceridemia in the rat. Biochem Pharmacol. 1993;46:1037–1042. doi: 10.1016/0006-2952(93)90668-M. [DOI] [PubMed] [Google Scholar]
  • 23.Palmer WK, Emeson EE, Johnston TP. The poloxamer 407-induced hyperlipidemic atherogenic animal model. Med Sci Sports Exerc. 1997;29:1416–1421. doi: 10.1097/00005768-199711000-00005. [DOI] [PubMed] [Google Scholar]
  • 24.Shihab FS, Bennett WM, Yi H, Choi SO, Andoh TF. Mycophenolate mofetil am eliorates arteriolopathy and decreases transforming growth factor-betal in chronic cyclosporine nephrotoxicity. Am J Transplant. 2003;3:1550–1559. doi: 10.1046/j.1600-6135.2003.00244.x. [DOI] [PubMed] [Google Scholar]
  • 25.Tsipas G, Morphake P. Beneficial effects of a diet rich in a maxture of n-6/n-3 essential fatty acids and of their metabolites on cyclosporine-nephrotoxicity. J Nutr Biochem. 2003;14:480–486. doi: 10.1016/S0955-2863(03)00102-5. [DOI] [PubMed] [Google Scholar]
  • 26.Lavasanifar A, Aliabadi HM, Brocks DR. Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution. Biomaterials. 2005;26:7251–7259. doi: 10.1016/j.biomaterials.2005.05.042. [DOI] [PubMed] [Google Scholar]
  • 27.Chimalakonda AP, Shah RB, Mehvar R. High-performance liquid chromatographic analysis of cyclosporin A in rat blood and liver using a commercially available internal standard. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;772:107–114. doi: 10.1016/S1570-0232(02)00062-4. [DOI] [PubMed] [Google Scholar]
  • 28.Bailer AJ. Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokinet Biopharm. 1988;16:303–309. doi: 10.1007/BF01062139. [DOI] [PubMed] [Google Scholar]
  • 29.Wasan KM, Subramanian R, Kwong M, Goldberg IJ, Wright T, Johnston TP. Poloxamer 407-mediated alterations in the activities of enzymes regulating lipid metabolism in rats. J Pharm Pharm Sci. 2003;6:189–197. [PubMed] [Google Scholar]
  • 30.Grevel J, Reynolds KL, Rutzky LP, Kahan BD. Influence of demographic factors on cyclosporine pharmacokinetics in adult uremic patients. J Clin Pharmacol. 1989;29:261–266. doi: 10.1002/j.1552-4604.1989.tb03324.x. [DOI] [PubMed] [Google Scholar]
  • 31.Nakamura T, Kakumoto M, Sakaeda T, et al. Effect of serum triglyceride concentration on the fluctuation of whole blood concentration of cyclosporin A in patients. Biol Pharm Bull. 2001;24:683–687. doi: 10.1248/bpb.24.683. [DOI] [PubMed] [Google Scholar]
  • 32.Gardier AM, Mathe D, Guedeney X, et al. Effects of plasma lipid levels on blood distribution and pharmacokinetics of cyclosporin A. Ther Drug Monit. 1993;15:274–280. doi: 10.1097/00007691-199308000-00003. [DOI] [PubMed] [Google Scholar]
  • 33.Brunner LJ, Vadiei K, Luke DR. Cyclosporine disposition in the hyperlipidemic rat model. Res Commun Chem Pathol Pharmacol. 1988;59:339–348. [PubMed] [Google Scholar]
  • 34.Prueksaritanont T, Hoener BA, Benet LZ. Effects of low-density lipoprotein and ethinyl estradiol on cyclosporine metabolism in isolated rat liver perfusions. Drug Metab Dispos. 1992;20:547–552. [PubMed] [Google Scholar]
  • 35.Peteherych KD, Wasan KM. Effects of lipoproteins on cyclosporine A toxicity and uptake in LLC-PK1 pig kidney cells. J Pharm Sci. 2001;90:1395–1406. doi: 10.1002/jps.1092. [DOI] [PubMed] [Google Scholar]
  • 36.Darling IM, Morris ME. Evaluation of “true” creatinine clearance in rats reveals extensive renal secretion. Pharm Res. 1991;8:1318–1322. doi: 10.1023/A:1015820316660. [DOI] [PubMed] [Google Scholar]
  • 37.Bohdanecka M, Schuck O, Chadimova J, et al. The effect of omega-3 fatty acids and vitamin E on the nephrotoxicity of cyclosporin A in hereditary hypertriglyceridemic rats. Physiol Res. 1999;48:437–443. [PubMed] [Google Scholar]
  • 38.Mead JC, Brown PA, Whiting PH. The relationship between total kidney cyclosporin A concentrations, trough drug levels and renal function in the rat following withdrawal of treatment. Hum Exp Toxicol. 1994;13:506–511. doi: 10.1177/096032719401300710. [DOI] [PubMed] [Google Scholar]
  • 39.Tanaka C, Kawai R, Rowland M. Dose-dependent pharmacokinetics of cyclosporin A in rats: events in tissues. Drug Metab Dispos. 2000;28:582–589. [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES