Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2007 May 11;9(2):E148–E155. doi: 10.1208/aapsj0902016

Critical ligand binding reagent preparation/selection: When specificity depends on reagents

Bonita Rup 1, Denise O'Hara 1,
PMCID: PMC2751403  PMID: 17614357

Abstract

Throughout the life cycle of biopharmaceutical products, bioanalytical support is provided using ligand binding assays to measure the drug product for pharmacokinetic, pharmacodynamic, and immunogenicity studies. The specificity and selectivity of these ligand binding assays are highly dependent on the ligand binding reagents. Thus the selection, characterization, and management processes for ligand binding reagents are crucial to successful assay development and application. This report describes process considerations for selection and characterization of ligand binding reagents that are integral parts of the different phases of assay development. Changes in expression, purification, modification, and storage of the ligand binding reagents may have a profound effect on the ligand binding assay performance. Thus long-term management of the critical ligand binding assay reagents is addressed including suggested characterization criteria that allow ligand binding reagents to be used in as consistent a manner as possible. Examples of challenges related to the selection, modification, and characterization of ligand binding reagents are included.

Keywords: Ligand binding reagents, reagent characterization, assay specificity

Full Text

The Full Text of this article is available as a PDF (773.5 KB).

References

  • 1.Porstmann T, Kiessig ST. Enzyme immunoassay techniques. J Immunol Methods. 1992;150:5–21. doi: 10.1016/0022-1759(92)90061-W. [DOI] [PubMed] [Google Scholar]
  • 2.Findlay JWA, Smith WC, Lee JW, et al. Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J Pharm Biol. 2000;21:1249–1273. doi: 10.1016/S0731-7085(99)00244-7. [DOI] [PubMed] [Google Scholar]
  • 3.DeSilva B, Smith W, Weiner R, et al. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res. 2003;20:1885–1900. doi: 10.1023/B:PHAM.0000003390.51761.3d. [DOI] [PubMed] [Google Scholar]
  • 4.Mire-Sluis AR, Barrett YC, Devanarayan V, et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J Immunol Methods. 2004;289:1–16. doi: 10.1016/j.jim.2004.06.002. [DOI] [PubMed] [Google Scholar]
  • 5.Geng D, Shankar G, Schantz A, Rajadhyaksha M, Davis H, Wagner C. Validation of immunoassays used to assess immunogenicity to therapeutic monoclonal antibodies. J Pharm Biol. 2005;39:364–375. doi: 10.1016/j.jpba.2005.04.045. [DOI] [PubMed] [Google Scholar]
  • 6.Smolec J, DeSilva B, Smith W, et al. Bioanalytical method validation for macromolecules in support of pharmacokinetic studies. Pharm Res. 2005;22:1425–1431. doi: 10.1007/s11095-005-5917-9. [DOI] [PubMed] [Google Scholar]
  • 7.Shankar G, Shores E, Wagner C, Mire-Sluis A. Scientific and regulatory considerations on the immunogenicity of biologics. Trends Biotechnol. 2006;24:274–280. doi: 10.1016/j.tibtech.2006.04.001. [DOI] [PubMed] [Google Scholar]
  • 8.Tang L, Persky AM, Hochhaus G, Meibohm B. Pharmacokinetic aspects of biotechnology products. J Pharma Sci. 2004;93:2184–2204. doi: 10.1002/jps.20125. [DOI] [PubMed] [Google Scholar]
  • 9.Coleman PM. Structure of antibody-antigen complexes: implications of immune recognition. Adv Immunol. 1988;43:99–132. doi: 10.1016/s0065-2776(08)60364-8. [DOI] [PubMed] [Google Scholar]
  • 10.Butler JE. Perspectives, Configurations and Principles: Immunochemistry of Solid-phase Immunoassays. Boca Raton, FL: CRC Press; 1991. pp. 3–26. [Google Scholar]
  • 11.Tijssen P. Laboratory Techniques in Biochemistry and Molecular Biology. San Diego, CA: Elsevier Science Publishers; 1985. [Google Scholar]
  • 12.Gosling JB, editor. Immunoassays: A Practical Approach. Oxford, UK: Oxford University Press; 2000. [Google Scholar]
  • 13.Burns R. Immunochemical Protocols. Totowa, NJ: Humana Press; 2005. [Google Scholar]
  • 14.Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  • 15.Howard GC, Bethell DR.Basic Methods in Antibody Production and Characterization. Boca Raton, FL: CRC Press; 2001.
  • 16.Subramanian G. Antibodies. Vol 2. Novel Technologies and Therapeutic Use. New York, NY: Kluwer Academic/Plenum Publishers; 2004. [Google Scholar]
  • 17.Bradbury AR, Mark JD. Antibodies from phage antibody libraires. J Immunol. 2004;290:29–49. doi: 10.1016/j.jim.2004.04.007. [DOI] [PubMed] [Google Scholar]
  • 18.Lipvsek D, Pluckthun AJ. In-vitro protein evolution by ribosome display and mRNA display. Immunol Meth. 2004;290:51–67. doi: 10.1016/j.jim.2004.04.008. [DOI] [PubMed] [Google Scholar]
  • 19.Konthur Z, Hust M, Dubel S. Perspectives for systematic in vitro antibody generation. Gene. 2005;364:19–29. doi: 10.1016/j.gene.2005.05.042. [DOI] [PubMed] [Google Scholar]
  • 20.Brody EN, Gold LJ. Aptamers as therapeutic and diagnostic agents. J Biotechnol. 2000;74:5–13. doi: 10.1016/s1389-0352(99)00004-5. [DOI] [PubMed] [Google Scholar]
  • 21.Nord K, Gunneriusson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat Biotechnol. 1997;15:772–777. doi: 10.1038/nbt0897-772. [DOI] [PubMed] [Google Scholar]
  • 22.Engelbienne P. Immune and Receptor Assays in Theory and Practice. Boca Raton, FL: CRC Press; 2000. [Google Scholar]
  • 23.Wong SS. Chemistry of Protein Conjugation and Cross-linking. Boca Raton, FL: CRC Press; 2000. [Google Scholar]
  • 24.Niemeyer CM. Bioconjugation Protocols: Strategies and Methods. Totowa, NJ: Humana Press; 2004. pp. 283–283. [Google Scholar]
  • 25.Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994;8:133–146. doi: 10.1101/gad.8.2.133. [DOI] [PubMed] [Google Scholar]
  • 26.Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res. 1998;346:26–37. doi: 10.1097/00003086-199801000-00006. [DOI] [PubMed] [Google Scholar]
  • 27.Webb DJ, Wen J, Karns LR, Kurilla MG, Gonias SL. Localization of the binding site for transforming growth factor-B in human alpha-2-macroglobulin to a 20-kDa peptide that also contains the bait region. J Biol Chem. 1998;273:13339–13346. doi: 10.1074/jbc.273.21.13339. [DOI] [PubMed] [Google Scholar]
  • 28.Blum WF, Ranke MB. Plasma IGFBP-3 levels as clinical indicators. In: Spencer EM, editor. Modern Concepts of Insulin-Like Growth Factors. New York, NY: Elsevier Science Publishing Co; 1991. pp. 381–393. [Google Scholar]
  • 29.Harrison D, Celniker A, Reifsnyder D, Sipes D, Schroeder K, Gesundheit N. Measurement of serum insulin-like growth factor binding protein 3 using a two-site ELISA. Abstract 970 presented at: The 74th Endocrine Society Meeting; June 24–27, 1992; San Antonio, TX.

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES