Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2007 Jun 8;9(2):E171–E180. doi: 10.1208/aapsj0902019

Nanosystems for simultaneous imaging and drug delivery to T cells

Tarke M Fahmy 1,, Peter M Fong 1, Jason Park 1, Todd Constable 1,2, W Mark Saltzman 1
PMCID: PMC2751406  PMID: 17614359

Abstract

The T-cell response defines the pathogenesis of many common chronic disease states, including diabetes, rheumatoid arthritis, and transplant rejection. Therefore, a diagnostic strategy that visualizes this response can potentially lead to early therapeutic intervention, avoiding catastrophic organ failure or prolonged sickness. In addition, the means to deliver a drug dose to those cells in situ with the same specificity used to image those cells would provide for a powerful therapeutic alternative for many disease states involving T cells. In this report, we review emerging nanosystems that can be used for simultaneous tracking and drug delivery to those cells. Because of their versatility, these systems—which combine specific receptor targeting with an imaging agent and drug delivery—are suited to both basic science and applications, from developing therapeutic strategies for autoimmune and alloimmune diseases, to noninvasive tracking of pathogenic T-cell migration.

Keywords: T cells, noninvasive imaging, drug delivery, nanoparticles

Full Text

The Full Text of this article is available as a PDF (905.5 KB).

References

  • 1.Steinman L. Autoimmune-disease. Sci Am. 1993;269:106–106. doi: 10.1038/scientificamerican0993-106. [DOI] [PubMed] [Google Scholar]
  • 2.Hasler P. Biological therapies directed against cells in autoimmune disease. Springer Semin Immunopathol. 2006;27:443–456. doi: 10.1007/s00281-006-0013-8. [DOI] [PubMed] [Google Scholar]
  • 3.Ogg GS. T-cell immunotherapy of allergic disease: the role of CD8+T cells. Curr Opin Allergy Clin Immunol. 2003;3:475–479. doi: 10.1097/00130832-200312000-00009. [DOI] [PubMed] [Google Scholar]
  • 4.Westermann J, Bode U. Distribution of activated T cells migrating through the body: a matter of life and death. Immunol Today. 1999;20:302–306. doi: 10.1016/S0167-5699(99)01474-7. [DOI] [PubMed] [Google Scholar]
  • 5.Westermann J, Ehlers EM, Exton MS, Kaiser M, Bode U. Migration of naive, effector and memory T cells: implications for the regulation of immune responses. Immunol Rev. 2001;184:20–37. doi: 10.1034/j.1600-065x.2001.1840103.x. [DOI] [PubMed] [Google Scholar]
  • 6.Westermann J, Engelhardt B, Hoffmann JC. Migration of T cells in vivo: molecular mechanisms and clinical implications. Ann Intern Med. 2001;135:279–295. doi: 10.7326/0003-4819-135-4-200108210-00013. [DOI] [PubMed] [Google Scholar]
  • 7.Germain RN, Miller MJ, Dustin ML, Nussenzweig MC. Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol. 2006;6:497–507. doi: 10.1038/nri1884. [DOI] [PubMed] [Google Scholar]
  • 8.Bradley LM. Migration and T-lymphocyte effector function. Curr Opin Immunol. 2003;15:343–348. doi: 10.1016/S0952-7915(03)00043-8. [DOI] [PubMed] [Google Scholar]
  • 9.Hennecke J, Wiley DC. T cell receptor-MHC interactions up close. Cell. 2001;104:1–4. doi: 10.1016/S0092-8674(01)00185-4. [DOI] [PubMed] [Google Scholar]
  • 10.Corr M, Slanetz AE, Boyd LF, et al. T cell receptor-MHC class I peptide interactions: affinity, kinetics, and specificity. Science. 1994;265:946–949. doi: 10.1126/science.8052850. [DOI] [PubMed] [Google Scholar]
  • 11.Sykulev Y, Brunmark A, Jackson M, Cohen RJ, Peterson PA, Eisen HN. Kinetics and affinity of reactions between an antigen-specific T cell receptor and peptide-MHC complexes. Immunity. 1994;1:15–22. doi: 10.1016/1074-7613(94)90005-1. [DOI] [PubMed] [Google Scholar]
  • 12.Altman JD, Moss PA, Goulder PJ, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274:94–96. doi: 10.1126/science.274.5284.94. [DOI] [PubMed] [Google Scholar]
  • 13.Constantin CM, Bonney EE, Altman JD, Strickland OL. Major histocompatibility complex (MHC) tetramer technology: an evaluation. Biol Res Nurs. 2002;4:115–127. doi: 10.1177/1099800402238332. [DOI] [PubMed] [Google Scholar]
  • 14.Howard MC, Spack EG, Choudhury K, Greten TF, Schneck JP. MHC-based diagnostics and therapeutics—clinical applications for disease-linked genes. Immunol Today. 1999;20:161–165. doi: 10.1016/S0167-5699(98)01390-5. [DOI] [PubMed] [Google Scholar]
  • 15.Klenerman P, Cerundolo V, Dumbar PR. Tracking T cells with tetramers: new tales from new tools. Nat Rev Immunol. 2002;2:263–272. doi: 10.1038/nri777. [DOI] [PubMed] [Google Scholar]
  • 16.Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305–334. doi: 10.1146/annurev.immunol.21.120601.141110. [DOI] [PubMed] [Google Scholar]
  • 17.Casares S, Stan AC, Bona CA, Brumeanu TD. Antigen-specific downregulation of T cells by doxorubicin delivered through a recombinant MHC II-peptide chimera. Nat Biotechnol. 2001;19:142–147. doi: 10.1038/84404. [DOI] [PubMed] [Google Scholar]
  • 18.Cahalan MD, Parker I. Imaging the choreography of lymphocyte trafficking and the immune response. Curr Opin Immunol. 2006;18:476–482. doi: 10.1016/j.coi.2006.05.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Iparraguirre A, Weninger W. Visualizing T cell migration in vivo. Int Arch Allergy Immunol. 2003;132:277–293. doi: 10.1159/000074896. [DOI] [PubMed] [Google Scholar]
  • 20.Reinhardt RL, Jenkins MK. Whole-body analysis of T cell responses. Curr Opin Immunol. 2003;15:366–371. doi: 10.1016/S0952-7915(03)00077-3. [DOI] [PubMed] [Google Scholar]
  • 21.Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature. 2001;410:101–105. doi: 10.1038/35065111. [DOI] [PubMed] [Google Scholar]
  • 22.Cahalan MD, Parker I, Wei SH, Miller MJ. 2-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol. 2002;2:872–880. doi: 10.1038/nri935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Wei SH, Miller MJ, Cahalan MD, Parker I. Two-photon imaging in intact lymphoid tissue. Adv Exp Med Biol. 2002;512:203–208. doi: 10.1007/978-1-4615-0757-4_26. [DOI] [PubMed] [Google Scholar]
  • 24.Miller MJ, Wei SH, Cahalan MD, Parker I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc Natl Acad Sci USA. 2003;100:2604–2609. doi: 10.1073/pnas.2628040100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Osman S, Danpure HJ. The use of 2-[18F]fluoro-2-deoxy-D-glucose as a potential in vitro agent for labelling human granulocytes for clinical studies by positron emission tomography. Int J Rad Appl Instrum B. 1992;19:183–190. doi: 10.1016/0883-2897(92)90006-k. [DOI] [PubMed] [Google Scholar]
  • 26.Roddie ME, Peters AM, Danpure HJ, et al. Inflammation: imaging with Tc-99m HMPAO-labeled leukocytes. Radiology. 1988;166:767–772. doi: 10.1148/radiology.166.3.3340775. [DOI] [PubMed] [Google Scholar]
  • 27.Edinger M, Cao YA, Hornig YS, et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer. 2002;38:2128–2136. doi: 10.1016/S0959-8049(02)00410-0. [DOI] [PubMed] [Google Scholar]
  • 28.Mandl S, Schimmelpfennig C, Edinger M, Negrin RS, Contag CH. Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J Cell Biochem. 2002;87:239–248. doi: 10.1002/jcb.10454. [DOI] [PubMed] [Google Scholar]
  • 29.Costa GL, Sandora MR, Nakajima A, et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol. 2001;167:2379–2387. doi: 10.4049/jimmunol.167.4.2379. [DOI] [PubMed] [Google Scholar]
  • 30.Nakajima A, Seroogy CM, Sandora MR, et al. Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest. 2001;107:1293–1301. doi: 10.1172/JCI12037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Herschman HR. Micro-PET imaging and small animal models of disease. Curr Opin Immunol. 2003;15:378–384. doi: 10.1016/S0952-7915(03)00066-9. [DOI] [PubMed] [Google Scholar]
  • 32.Sosnovik D, Weissleder R. Magnetic resonance and fluorescence based molecular imaging technologies. Prog Drug Res. 2005;62:83–115. doi: 10.1007/3-7643-7426-8_3. [DOI] [PubMed] [Google Scholar]
  • 33.Levchenko TS, Rammohan R, Volodina N, Torchilin VP. Tat peptide-mediated intracellular delivery of liposomes. Methods Enzymol. 2003;372:339–349. doi: 10.1016/S0076-6879(03)72019-9. [DOI] [PubMed] [Google Scholar]
  • 34.Wunderbaldinger P, Josephson L, Weissleder R. Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem. 2002;13:264–268. doi: 10.1021/bc015563u. [DOI] [PubMed] [Google Scholar]
  • 35.Smirnov P, Lavergne E, Gazeau F, et al. In vivo cellular imaging of lymphocyte trafficking by MRI: a tumor model approach to cell-based anticancer therapy. Magn Reson Med. 2006;56:498–508. doi: 10.1002/mrm.20996. [DOI] [PubMed] [Google Scholar]
  • 36.Matuszewski L, Persigehl T, Wall A, et al. Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology. 2005;235:155–161. doi: 10.1148/radiol.2351040094. [DOI] [PubMed] [Google Scholar]
  • 37.Gregoriadis G, Neerunjun T. Homing of liposomes to target cells. Biochem Biophys Res Commun. 1975;65:537–544. doi: 10.1016/S0006-291X(75)80180-X. [DOI] [PubMed] [Google Scholar]
  • 38.Gregoriadis G. Targeting of drugs: implications in medicine. Lancet. 1981;318:241–246. doi: 10.1016/S0140-6736(81)90486-4. [DOI] [PubMed] [Google Scholar]
  • 39.Gregoriadis G. The carrier potential of liposomes in biology and medicine. N Engl J Med. 1976;704:110–110. doi: 10.1056/NEJM197609232951305. [DOI] [PubMed] [Google Scholar]
  • 40.Gregoriadis G. Drug entrapment in liposomes. FEBS Lett. 1973;36:292–296. doi: 10.1016/0014-5793(73)80394-1. [DOI] [PubMed] [Google Scholar]
  • 41.Laverman P, Boerman OC, Oyen WJ, Dams ET, Storm G, Corstens FH. Liposomes for scintigraphic detection of infection and inflammation. Adv Drug Deliv Rev. 1999;37:225–235. doi: 10.1016/S0169-409X(98)00095-7. [DOI] [PubMed] [Google Scholar]
  • 42.Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 2006;19:142–164. doi: 10.1002/nbm.1011. [DOI] [PubMed] [Google Scholar]
  • 43.Torchilin VP. Liposomes as delivery agents for medical imaging. Mol Med Today. 1996;2:242–249. doi: 10.1016/1357-4310(96)88805-8. [DOI] [PubMed] [Google Scholar]
  • 44.Waterhouse DN, Madden TD, Cullis PR, Bally MB, Mayer LD, Webb MS. Preparation, characterization, and biological analysis of liposomal formulations of vincristine. Methods Enzymol. 2005;391:40–57. doi: 10.1016/S0076-6879(05)91002-1. [DOI] [PubMed] [Google Scholar]
  • 45.Heran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993;1151:201–215. doi: 10.1016/0005-2736(93)90105-9. [DOI] [PubMed] [Google Scholar]
  • 46.Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res. 2003;42:439–462. doi: 10.1016/S0163-7827(03)00032-8. [DOI] [PubMed] [Google Scholar]
  • 47.Allen TM, Sapra P, Moase E, Moreira J, Iden D. Adventures in targeting. J Liposome Res. 2002;12:5–12. doi: 10.1081/LPR-120004771. [DOI] [PubMed] [Google Scholar]
  • 48.Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res. 2000;6:1949–1957. [PubMed] [Google Scholar]
  • 49.Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–160. doi: 10.1038/nrd1632. [DOI] [PubMed] [Google Scholar]
  • 50.Boerman OC, Laverman P, Oyen WJ, Corstens FH, Storm G. Radiolabeled liposomes for scintigraphic imaging. Prog Lipid Res. 2000;39:461–475. doi: 10.1016/S0163-7827(00)00013-8. [DOI] [PubMed] [Google Scholar]
  • 51.Andreopoulos D, Kasi LP, Asimacopoulos PJ, et al. Selective in vitro labeling of white blood cells using 99mTc-labeled liposomes. Nucl Med Biol. 2002;29:185–190. doi: 10.1016/S0969-8051(01)00299-2. [DOI] [PubMed] [Google Scholar]
  • 52.Harrington KJ, Mohammadtaghi S, Uster PS, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res. 2001;7:243–254. [PubMed] [Google Scholar]
  • 53.Proffitt RT, Williams LE, Presant CA, et al. Tumor-imaging potential of liposomes loaded with In-111-NTA: biodistribution in mice. J Nucl Med. 1983;24:45–51. [PubMed] [Google Scholar]
  • 54.Bulte JW, Ma LD, Magin RL, et al. Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med. 1993;29:32–37. doi: 10.1002/mrm.1910290108. [DOI] [PubMed] [Google Scholar]
  • 55.Martina MS, Fortin JP, Menager C, et al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc. 2005;127:10676–10685. doi: 10.1021/ja0516460. [DOI] [PubMed] [Google Scholar]
  • 56.De Cuyper M, Joniau M. Magnetoliposomes. Formation and structural characterization. Eur Biophys J. 1988;15:311–315. doi: 10.1007/BF00256482. [DOI] [PubMed] [Google Scholar]
  • 57.Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6:319–327. doi: 10.1016/S1359-0286(02)00117-1. [DOI] [Google Scholar]
  • 58.Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20. doi: 10.1016/S0168-3659(00)00339-4. [DOI] [PubMed] [Google Scholar]
  • 59.Wiener EC, Brechbiel MW, Brothers H, et al. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med. 1994;31:1–8. doi: 10.1002/mrm.1910310102. [DOI] [PubMed] [Google Scholar]
  • 60.Jansen JFGA, De Brabander-van den Berg EMM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science. 1994;266:1226–1229. doi: 10.1126/science.266.5188.1226. [DOI] [PubMed] [Google Scholar]
  • 61.D'Emanuele A, Attwood D. Dendrimer-drug interactions. Adv Drug Deliv Rev. 2005;57:2147–2162. doi: 10.1016/j.addr.2005.09.012. [DOI] [PubMed] [Google Scholar]
  • 62.Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6:427–436. doi: 10.1016/S1359-6446(01)01757-3. [DOI] [PubMed] [Google Scholar]
  • 63.Kobayashi H, Kawamoto S, Jo SK, Bryant HL, Brechbiel MW, Star RA. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem. 2003;14:388–394. doi: 10.1021/bc025633c. [DOI] [PubMed] [Google Scholar]
  • 64.Klajnert B, Bryszewska M. Dendrimers: properties and applications. Acta Biochim Pol. 2001;48:199–208. [PubMed] [Google Scholar]
  • 65.Liu MJ, Kono K, Frechet JMJ. Water-soluble dendrimer-poly(ethylene glycol) starlike conjugates as potential drug carriers. J Polym Sci A. 2000;37:3492–3503. doi: 10.1002/(SICI)1099-0518(19990901)37:17<3492::AID-POLA7>3.0.CO;2-0. [DOI] [Google Scholar]
  • 66.Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoaminedendrimers having poly (ethyleneglycol) grafts and their ability to encapsulate anticaner drugs. Bioconjugate Chem. 2000;11:910–917. doi: 10.1021/bc0000583. [DOI] [PubMed] [Google Scholar]
  • 67.Jansen JFGA, Meijer EW, de Brabander-van den Berg EMM. The dendritic box: shape-selective liberation of encapsulated guests. J Am Chem Soc. 1995;117:4417–4418. doi: 10.1021/ja00120a032. [DOI] [Google Scholar]
  • 68.Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules. 2002;35:3456–3462. doi: 10.1021/ma0106346. [DOI] [Google Scholar]
  • 69.Dennig J, Duncan E. Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers. J Biotechnol. 2002;90:339–347. doi: 10.1016/s1389-0352(01)00066-6. [DOI] [PubMed] [Google Scholar]
  • 70.Yoo HS, Lee KH, Oh JE, Park TG. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J Control Release. 2000;68:419–431. doi: 10.1016/S0168-3659(00)00280-7. [DOI] [PubMed] [Google Scholar]
  • 71.Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, Brechbiel MW. Evaluation of the in vivo biodistribution of indium-111 and uttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody. Bioconjug Chem. 1999;10:103–111. doi: 10.1021/bc980091d. [DOI] [PubMed] [Google Scholar]
  • 72.Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett. 2006;6:1459–1463. doi: 10.1021/nl060765q. [DOI] [PubMed] [Google Scholar]
  • 73.Venditto VJ, Regino CA, Brechbiel MW. PAMAM dendrimer based macromolecules as improved contrast agents. Mol Pharm. 2005;2:302–311. doi: 10.1021/mp050019e. [DOI] [PubMed] [Google Scholar]
  • 74.Pan D, Turner JL, Wooley KL. Folic acid-conjugated nanostructured materials designed for cancer cell targeting. Chem Commun (Camb) 2003;19:2400–2401. doi: 10.1039/b307878g. [DOI] [PubMed] [Google Scholar]
  • 75.Daly T, Royal RE, Kershaw MH, et al. Recognition of human colon cancer by T cells transduced with a chimeric receptor gene. Cancer Gene Ther. 2000;7:284–291. doi: 10.1038/sj.cgt.7700121. [DOI] [PubMed] [Google Scholar]
  • 76.Sakharov DV, Jie AF, Filippov DV, Bekkers ME, van Boom JH, Rijken DC. Binding and retention of polycationic peptides and dendrimers in the vascular wall. FEBS Lett. 2003;537:6–10. doi: 10.1016/S0014-5793(03)00063-2. [DOI] [PubMed] [Google Scholar]
  • 77.Wiwattanapatapee R, Lomlim L, Saramunee K. Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J Control Release. 2003;88:1–9. doi: 10.1016/S0168-3659(02)00461-3. [DOI] [PubMed] [Google Scholar]
  • 78.Fahmy T, Schneck J, Saltzman W. A nanoscopic multivalent antigen-presenting carrier for sensitive detection and drug delivery to T cells.Nanomedicine. In press. [DOI] [PubMed]
  • 79.Belcheva N, Baldwin SP, Saltzman WM. Synthesis and characterization of polymer-(multi)-peptide conjugates for control of specific cell aggregation. J Biomater Sci Polym Ed. 1998;9:207–226. doi: 10.1163/156856298x00613. [DOI] [PubMed] [Google Scholar]
  • 80.Belcheva N, Woodrow-Mumford K, Mahoney MJ, Saltzman WM. Synthesis and biological activity of polyethylene glycol-mouse nerve growth factor conjugate. Bioconjug Chem. 1999;10:932–937. doi: 10.1021/bc990001k. [DOI] [PubMed] [Google Scholar]
  • 81.Katre NV. The conjugation of proteins with polyethylene glycol and other polymers altering properties of proteins to enhance their therapeutic potential. Adv Drug Deliv Rev. 1993;10:91–114. doi: 10.1016/0169-409X(93)90005-O. [DOI] [Google Scholar]
  • 82.Kobayashi H, Brechbiel MW. Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol. 2004;5:539–549. doi: 10.2174/1389201043376571. [DOI] [PubMed] [Google Scholar]
  • 83.Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev. 2005;57:2271–2286. doi: 10.1016/j.addr.2005.09.016. [DOI] [PubMed] [Google Scholar]
  • 84.Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24. doi: 10.1016/S0169-409X(97)00048-3. [DOI] [PubMed] [Google Scholar]
  • 85.Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature. 1976;263:797–800. doi: 10.1038/263797a0. [DOI] [PubMed] [Google Scholar]
  • 86.Visscher GE, Robison RL, Maulding HV, Fong JW, Pearson JE, Argentieri GJ. Biodegradation of and tissue reaction to 50∶50 poly(DL-lactide-co-glycolide) microcapsules. J Biomed Mater Res. 1985;19:349–365. doi: 10.1002/jbm.820190315. [DOI] [PubMed] [Google Scholar]
  • 87.Emerich DF, Snodgrass P, Lafreniere D, et al. Sustained release chemotherapeutic microspheres provide superior efficacy over systemic therapy and local bolus infusions. Pharm Res. 2002;19:1052–1060. doi: 10.1023/A:1016434926649. [DOI] [PubMed] [Google Scholar]
  • 88.Hu YP, Jarillon S, Dubernet C, Couvreur P, Robert J. On the mechanism of action of doxorubicin encapsulation in nanospheres for the reversal of multidrug resistance. Cancer Chemother Pharmacol. 1996;37:556–560. doi: 10.1007/s002800050428. [DOI] [PubMed] [Google Scholar]
  • 89.Chen HH, Le Visage C, Qiu B, et al. MR imaging of biodegradable polymeric microparticles: a potential method of monitoring local drug delivery. Magn Reson Med. 2005;53:614–620. doi: 10.1002/mrm.20395. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES