Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 Jan 20;8(1):E1–E13. doi: 10.1208/aapsj080101

Current industrial practices of assessing permeability and P-glycoprotein interaction

Praveen V Balimane 1,, Yong-Hae Han 1, Saeho Chong 1
PMCID: PMC2751418  PMID: 16584115

Abstract

Combination of the in vitro models that are high throughput but less predictive and the in vivo models that are low throughput but more predictive is used effectively to evaluate the intestinal permeability and transport characteristics of a large number of drug candidates during lead selection and lead optimization processes. Parallel artificial membrane permeability assay and Caco-2 cells are the most frequently used in vitro models to assess intestinal permeability. The popularity of these models stems from their potential for high throughput, cost effectiveness, and adequate predictability of absorption potential in humans. However, several caveats associated with these models (eg, poor predictability for transporter-mediated and paracellularly absorbed compounds, significant nonspecific binding to cells/devices leading to poor recovery, variability associated with experimental factors) need to be considered carefully to realize their full potential. P-glycoprotein, among other pharmaceutically relevant transporters, has been well demonstrated to be the major determinant of drug disposition. The review article presents an objective analysis of the permeability and transporter models currently being used in the pharmaceutical industry and could help guide the discovery scientists in implementing these models in an optimal fashion.

Keywords: permeability, high throughput, Caco-2 cells, transporters, drug discovery, PAMPA, P-gp

Full Text

The Full Text of this article is available as a PDF (371.3 KB).

References

  • 1.Food and Drug Administration . Challenges and Opportunity on the Critical Path to New Medical Products. Rockville, MD: Food and Drug Administration; 2004. [Google Scholar]
  • 2.Kola I, Landis J. Can pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–715. doi: 10.1038/nrd1470. [DOI] [PubMed] [Google Scholar]
  • 3.Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods. 2000;44:301–312. doi: 10.1016/S1056-8719(00)00113-1. [DOI] [PubMed] [Google Scholar]
  • 4.Hidalgo I. Assessing the absorption of new pharmaceuticals. Curr Top Med Chem. 2001;1:385–401. doi: 10.2174/1568026013395010. [DOI] [PubMed] [Google Scholar]
  • 5.Hillgren K, Kato A, Borchardt R. In vitro systems for studying intestinal drug absorption. Med Res Rev. 1995;15:83–109. doi: 10.1002/med.2610150202. [DOI] [PubMed] [Google Scholar]
  • 6.Lipinski C, Lombardo F, Dominy B, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. [DOI] [PubMed] [Google Scholar]
  • 7.Avdeef A. Physicochemical profiling (solubility, permeability and charge state) Curr Top Med Chem. 2001;1:277–351. doi: 10.2174/1568026013395100. [DOI] [PubMed] [Google Scholar]
  • 8.Lin J. Drug-drug interaction mediated by inhibition and induction of P-glycoprotein. Adv Drug Deliv Rev. 2003;55:53–81. doi: 10.1016/S0169-409X(02)00171-0. [DOI] [PubMed] [Google Scholar]
  • 9.Polli J, Jerrett J, Studenberg J, et al. Role of P-gp on CNS disposition of amprenavir, an HIV protease inhibitor. Pharm Res. 1999;16:1206–1212. doi: 10.1023/A:1018941328702. [DOI] [PubMed] [Google Scholar]
  • 10.Kim R, Wendel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-gp. Pharm Res. 1999;16:408–414. doi: 10.1023/A:1018877803319. [DOI] [PubMed] [Google Scholar]
  • 11.Lin J, Yamazaki M. Role of P-glycoprotein in pharmacokinetics. Clin Pharmacokinet. 2003;42:59–98. doi: 10.2165/00003088-200342010-00003. [DOI] [PubMed] [Google Scholar]
  • 12.Simpson K, Jarvis B. Fexofenadine: a review of its use in the management of seasonal allergic rhinitis and chronic idiopathic urticaria. Drugs. 2000;59:301–321. doi: 10.2165/00003495-200059020-00020. [DOI] [PubMed] [Google Scholar]
  • 13.Watanabe T, Miyauchi S, Sawada Y, et al. Kinetic analysis of hepatobiliary transport of vincristine in perfused rat liver: possible roles of P-gp in biliary excretion of vincristine. J Hepatol. 1992;16:77–88. doi: 10.1016/S0168-8278(05)80098-4. [DOI] [PubMed] [Google Scholar]
  • 14.Adachi Y, Suzuki H, Sugiyama Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-gp. Pharm Res. 2001;18:1660–1668. doi: 10.1023/A:1013358126640. [DOI] [PubMed] [Google Scholar]
  • 15.Perloff M, Stromer E, von Moltke L, Greenblatt D. Rapid assessment of P-gp inhibition and induction in vitro. Pharm Res. 2003;20:1177–1183. doi: 10.1023/A:1025092829696. [DOI] [PubMed] [Google Scholar]
  • 16.Polli J, Wring S, Humphreys J, et al. Rational use of in vitro P-gp assays in drug discovery. J Pharmacol Exp Ther. 2001;299:620–628. [PubMed] [Google Scholar]
  • 17.Yamazaki M, Neway W, Ohe T, et al. In vitro substrate identification studies for P-gp mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther. 2001;296:723–735. [PubMed] [Google Scholar]
  • 18.Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41:1007–1010. doi: 10.1021/jm970530e. [DOI] [PubMed] [Google Scholar]
  • 19.Kerns E. High throughput physicochemical profiling for drug discovery. J Pharm Sci. 2001;90:1838–1858. doi: 10.1002/jps.1134. [DOI] [PubMed] [Google Scholar]
  • 20.Ruell JA, Tsinman KL, Avdeef A. PAMPA—a drug absorption in vitro model. 5. Unstirred water layer in iso-pH mapping assays and pKa(flux)—optimized design (pOD-PAMPA) Eur J Pharm Sci. 2003;20:393–402. doi: 10.1016/j.ejps.2003.08.006. [DOI] [PubMed] [Google Scholar]
  • 21.Di L, Kerns EH, Fan K, McConnell OJ, Carter GT. High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem. 2003;38:223–232. doi: 10.1016/S0223-5234(03)00012-6. [DOI] [PubMed] [Google Scholar]
  • 22.Artursson P. Cell cultures as models for drug absorption across the intestinal mucosa. Crit Rev Ther Drug Carrier Syst. 1991;8:305–330. [PubMed] [Google Scholar]
  • 23.Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelia (Caco-2) cells. Biochem Biophys Res Commun. 1991;175:880–890. doi: 10.1016/0006-291X(91)91647-U. [DOI] [PubMed] [Google Scholar]
  • 24.Rubas W, Cromwell M, Shahrokh Z, et al. Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. J Pharm Sci. 1996;85:165–169. doi: 10.1021/js950267+. [DOI] [PubMed] [Google Scholar]
  • 25.Aungst B, Nguyen N, Bulgarelli J, Oates-Lenz K. The influence of donor and reservoir additives on Caco-2 perm eability and secretory transport of HIV protease inhibitors and other lipophilic compounds. Pharm Res. 2000;17:1175–1180. doi: 10.1023/A:1026402410783. [DOI] [PubMed] [Google Scholar]
  • 26.Balimane PV, Chong S. A combined cell based approach to identify P-glycoprotein substrates and inhibitors in a single assay. Int J Pharm. 2005;301:80–88. doi: 10.1016/j.ijpharm.2005.05.034. [DOI] [PubMed] [Google Scholar]
  • 27.Braun A, Hammerle S, Suda K, Rothen-Rutishauser B, Gunthert M, Wunderli-Allenspach H. Cell cultures as tools in biopharmacy. Eur J Pharm Sci. 2000;11:S51–S60. doi: 10.1016/S0928-0987(00)00164-0. [DOI] [PubMed] [Google Scholar]
  • 28.Horie K, Tang F, Borchardt R. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance efflux transporter. Pharm Res. 2003;20:161–168. doi: 10.1023/A:1022359300826. [DOI] [PubMed] [Google Scholar]
  • 29.Ungell AL. Caco-2 replace or refine? Drug Discov Today Technol. 2004;1:423–430. doi: 10.1016/j.ddtec.2004.11.003. [DOI] [PubMed] [Google Scholar]
  • 30.Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov Today. 2005;10:335–343. doi: 10.1016/S1359-6446(04)03354-9. [DOI] [PubMed] [Google Scholar]
  • 31.Chong S, Dando S, Soucek K, Morrison R. In vitro permeability through Caco-2 cells is not quantitatively predictive of in vivo absorption for peptide-like drugs absorbed via the dipeptide transporter system. Pharm Res. 1996;13:120–123. doi: 10.1023/A:1016045820933. [DOI] [PubMed] [Google Scholar]
  • 32.Ano R, Kimura Y, Shima M, Matsuno R, Ueno T, Akamatsu M. Relationship between structure and high-throughput screening permeability of papetide derivatives and related compounds with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorg Med Chem. 2004;12:257–264. doi: 10.1016/j.bmc.2003.10.002. [DOI] [PubMed] [Google Scholar]
  • 33.Kerns E, Di L, Petusky S, Farris M, Ley R, Jupp P. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J Pharm Sci. 2004;93:1440–1453. doi: 10.1002/jps.20075. [DOI] [PubMed] [Google Scholar]
  • 34.Dressman J, Berardi R, Dermentzoglou L, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7:756–761. doi: 10.1023/A:1015827908309. [DOI] [PubMed] [Google Scholar]
  • 35.Russell T, Berardi R, Barnett J, et al. Upper gastrointestinal pH in 79 healthy, elderly, North American men and women. Pharm Res. 1993;10:187–196. doi: 10.1023/A:1018970323716. [DOI] [PubMed] [Google Scholar]
  • 36.Anderle P, Huang Y, Sadee W. Intestinal membrane transport of drugs and nutrients: genomic membrane transporters using expression microarray. Eur J Pharm Sci. 2004;21:17–24. doi: 10.1016/S0928-0987(03)00169-6. [DOI] [PubMed] [Google Scholar]
  • 37.Behrens I, Kamm W, Dantzig A, Kissel T. Variation of peptide transporter (PepT1 and HPT1) expression in Caco-2 cells as a function of cell origin. J Pharm Sci. 2004;93:1743–1754. doi: 10.1002/jps.20062. [DOI] [PubMed] [Google Scholar]
  • 38.Sun D, Lennernas H, Welage L, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12 000 gene sequence tags and correlation with permeability of 26 drugs. Pharm Res. 2002;19:1400–1416. doi: 10.1023/A:1020483911355. [DOI] [PubMed] [Google Scholar]
  • 39.Krishna G, Chen K, Lin C, Nomeir A. Permeability of lipophilic compounds in drug discovery using in vitro human absorption model, Caco-2. Int J Pharm. 2001;222:77–89. doi: 10.1016/S0378-5173(01)00698-6. [DOI] [PubMed] [Google Scholar]
  • 40.Saha P, Kou J. Effect of bovine serum albumin on drug permeability estimation across Caco-2 monolayers. Eur J Pharm Biopharm. 2002;54:319–324. doi: 10.1016/S0939-6411(02)00089-9. [DOI] [PubMed] [Google Scholar]
  • 41.Dimitrijevic D, Shaw A, Florence A. Effects of some non-ionic surfactants on transepithelial permeability in Caco-2 cells. J Pharm Pharmacol. 2000;52:157–162. doi: 10.1211/0022357001773805. [DOI] [PubMed] [Google Scholar]
  • 42.Rege B, Yu L, Hussain A, Polli J. Effect of common excipients on Caco-2 transport of low-permeability drugs. J Pharm Sci. 2001;90:1776–1786. doi: 10.1002/jps.1127. [DOI] [PubMed] [Google Scholar]
  • 43.Rege B, Kao J, Polli J. Effect of non-ionic surfactants on membrane transport in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16:237–246. doi: 10.1016/S0928-0987(02)00055-6. [DOI] [PubMed] [Google Scholar]
  • 44.Ingels F, Augustijns P. Biological, pharmaceutical, and analytical considerations with respect to the transport media used in the absorption screening system, Caco-2. J Pharm Sci. 2003;92:1545–1558. doi: 10.1002/jps.10408. [DOI] [PubMed] [Google Scholar]
  • 45.Walter E, Kissel T. Heterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transport. Eur J Pharm Sci. 1995;3:215–230. doi: 10.1016/0928-0987(95)00010-B. [DOI] [Google Scholar]
  • 46.Maliepaard M, van Gastelen M, Tohgo A, et al. Circum vention of BCRP-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin Cancer Res. 2001;7:935–941. [PubMed] [Google Scholar]
  • 47.Woehlecke H, Pohl A, Alder-Berens N, Lage H, Herrmann A. Enhanced exposure of phosphatidylserine in human gastric carcinoma cells overexpressing the half-size ABC transporter BCRP (ABCG2) Biochem J. 2003;376:489–495. doi: 10.1042/BJ20030886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Chen Z, Kawabe T, Ono M, et al. Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Mol Pharmacol. 1999;56:1219–1228. doi: 10.1124/mol.56.6.1219. [DOI] [PubMed] [Google Scholar]
  • 49.Dantzig A, Shepard R, Law K, et al. Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J Pharmacol Exp Ther. 1999;290:854–862. [PubMed] [Google Scholar]
  • 50.Volk E, Schneider E. Wild type BCRP is a methotrexate polyglutamate transporter. Cancer Res. 2003;63:5538–5543. [PubMed] [Google Scholar]
  • 51.Zhang S, Yang X, Morris M. Flavonoids are inhibitors of BCRP-mediated transport. Mol Pharmacol. 2004;65:1208–1216. doi: 10.1124/mol.65.5.1208. [DOI] [PubMed] [Google Scholar]
  • 52.Lee K, Ng C, Brouwer KL, Thakker DR. Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers. J Pharmacol Exp Ther. 2002;303:574–580. doi: 10.1124/jpet.102.038521. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES