Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 Mar 10;8(1):E118–E125. doi: 10.1208/aapsj080114

Opioid ligands with mixed μ/δ opioid receptor interactions: An emerging approach to novel analgesics

Subramaniam Ananthan 1,
PMCID: PMC2751430  PMID: 16584118

Abstract

Opioids are widely used in the treatment of severe pain. The clinical use of the opioids is limited by serious side effects such as respiratory depression, constipation, development of tolerance, and physical dependence and addiction liabilities. Most of the currently available opioid analgesics exert their analgesic and adverse effects primarily through the opioid μ receptors. A large number of biochemical and pharmacological studies and studies using genetically modified animals have provided convincing evidence regarding the existence of modulatory interactions between opioid μ and δ receptors. Several studies indicate that δ receptor agonists as well as δ receptor antagonists can provide beneficial modulation to the pharmacological effects of μ agonists. For example, δ agonists can enhance the analgesic potency and efficacy of μ agonists, and δ antagonists can prevent or diminish the development of tolerance and physical dependence by μ agonists. On the basis of these observations, the development of new opioid ligands possessing mixed μ agonist/δ agonist profile and mixed μ agonist/δ antagonist profile has emerged as a promising new approach to analgesic drug development. A brief overview of μ-δ interactions and recent developments in identification of ligands possessing mixed μ agonist/δ agonist and μ agonist/δ antagonist activities is provided in this report.

Key words: Analgesics, Opioid Ligands, Mixed Mu/Delta agonists, Mixed Mu agonist/Delta antagonists, Peptides, Nonpeptides

Full Text

The Full Text of this article is available as a PDF (215.7 KB).

References

  • 1.Aldrich JV, Vigil-Cruz SC. Narcotic analgesics. In: Abraham DJ, editor. Burger's Medicinal Chemistry and Drug Discovery. New York, NY: John Wiley & Sons; 2003. pp. 329–481. [Google Scholar]
  • 2.Friderichs E. Opioids. In: Buschmann H, Christoph T, Friderichs E, Maul C, Sundermann B, editors. Analgesics From Chemistry and Pharmacology to Clinical Application. Weinheim, Germany: Wiley-VCH; 2002. pp. 127–150. [Google Scholar]
  • 3.Rapaka RS, Porreca F. Development of delta opioid peptides as nonaddicting analgesics. Pharm Res. 1991;8:1–8. doi: 10.1023/A:1015809702296. [DOI] [PubMed] [Google Scholar]
  • 4.Traynor JR. Elliott J, δ-Opioid receptor subtypes and cross-talk with μ-receptors. Trends Pharmacol Sci. 1993;14:84–86. doi: 10.1016/0165-6147(93)90068-U. [DOI] [PubMed] [Google Scholar]
  • 5.Rothman RB, Holaday JW, Porreca F. Allosteric coupling among opioid receptors: evidence for an opioid receptor complex. In: Herz A, Akil H, Simon EJ, editors. Handbook of Experimental Pharmacology: Opioids I. Berlin, Germany: Springer-Verlag; 1993. pp. 217–237. [Google Scholar]
  • 6.Jordan BA, Cvejic S, Devi LA. Opioids and their complicated receptor complexes. Neuropsychopharmacology. 2000;23:S5–S18. doi: 10.1016/S0893-133X(00)00143-3. [DOI] [PubMed] [Google Scholar]
  • 7.Egan TM, North RA. Both mu and delta opiate receptors exist on the same neuron. Science. 1981;214:923–924. doi: 10.1126/science.6272393. [DOI] [PubMed] [Google Scholar]
  • 8.Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci. 2000;20:RC110–RC110. doi: 10.1523/JNEUROSCI.20-22-j0007.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.George SR, Fan T, Xie Z, et al. Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem. 2000;275:26128–26135. doi: 10.1074/jbc.M000345200. [DOI] [PubMed] [Google Scholar]
  • 10.Levac BA, O'Dowd BF, George SR. Oligomerization of opioid receptors: generation of novel signaling units. Curr Opin Pharmacol. 2002;2:76–81. doi: 10.1016/S1471-4892(02)00124-8. [DOI] [PubMed] [Google Scholar]
  • 11.Fan T, Varghese G, Nguyen T, Tse R, O'Dowd BF, George SR. A role for the distal carboxyl tails in generating the novel pharmacology and G protein activation profile of mu and delta opioid receptor hetero-oligomers. J Biol Chem. 2005;280:38478–38488. doi: 10.1074/jbc.M505644200. [DOI] [PubMed] [Google Scholar]
  • 12.Kieffer BL. Opioids: first lessons from knockout mice. Trends Pharmacol Sci. 1999;20:19–26. doi: 10.1016/S0165-6147(98)01279-6. [DOI] [PubMed] [Google Scholar]
  • 13.Vaught JL, Takemori AE. Differential effects of leucine and methionine enkephalin on morphine-induced analgesia, acute tolerance and dependence. J Pharmacol Exp Ther. 1979;208:86–90. [PubMed] [Google Scholar]
  • 14.Horan P, Tallarida RJ, Haaseth RC, Matsunaga TO, Hruby VJ, Porreca F. Antinociceptive interactions of opioid delta receptor agonists with morphine in mice: supra- and sub-additivity. Life Sci. 1992;50:1535–1541. doi: 10.1016/0024-3205(92)90144-E. [DOI] [PubMed] [Google Scholar]
  • 15.He L, Lee NM. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord. J Pharmacol Exp Ther. 1998;285:1181–1186. [PubMed] [Google Scholar]
  • 16.Porreca F, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI. Modulation of mu-mediated antinociception in the mouse involves opioid delta-2 receptors. J Pharmacol Exp Ther. 1992;263:147–152. [PubMed] [Google Scholar]
  • 17.Martin NA, Prather PL. Interaction of co-expressed mu- and delta-opioid receptors in transfected rat pituitary GH(3) cells. Mol Pharmacol. 2001;59:774–783. doi: 10.1124/mol.59.4.774. [DOI] [PubMed] [Google Scholar]
  • 18.Cahill CM, Morinville A, Lee MC, Vincent JP, Collier B, Beaudet A. Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception. J Neurosci. 2001;21:7598–7607. doi: 10.1523/JNEUROSCI.21-19-07598.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Coop A, Rice KC. Role of delta-opioid receptors in biological processes. Drug News Perspect. 2000;13:481–487. [PubMed] [Google Scholar]
  • 20.Bishop MJ, Garrido DM, Boswell GE, et al. 3-(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxyben zyl)-N-alkyl-N-arylbenzamides: potent, non-peptidic agonists of both the mu and delta opioid receptors. J Med Chem. 2003;46:623–633. doi: 10.1021/jm020395s. [DOI] [PubMed] [Google Scholar]
  • 21.Lipkowski AW, Konecka AM, Sroczynska I. Double-enkephalins-synthesis, activity on guinea-pig ileum, and analgesic effect. Peptides. 1982;3:697–700. doi: 10.1016/0196-9781(82)90173-5. [DOI] [PubMed] [Google Scholar]
  • 22.Horan PJ, Mattia A, Bilsky EJ, et al. Antinociceptive profile of biphalin, a dimeric enkephalin analog. J Pharmacol Exp Ther. 1993;265:1446–1454. [PubMed] [Google Scholar]
  • 23.Silbert BS, Lipkowski AW, Cepeda MS, Szyfelbein SK, Osgood PF, Carr DB. Analgesic activity of a novel bivalent opioid peptide compared to morphine via different routes of administration. Agents Actions. 1991;33:382–387. doi: 10.1007/BF01986590. [DOI] [PubMed] [Google Scholar]
  • 24.Yamazaki M, Suzuki T, Narita M, Lipkowski AW. The opioid peptide analogue biphalin induces less physical dependence than morphine. Life Sci. 2001;69:1023–1028. doi: 10.1016/S0024-3205(01)01194-8. [DOI] [PubMed] [Google Scholar]
  • 25.Abbruscato TJ, Thomas SA, Hruby VJ, Davis TP. Brain and spinal cord distribution of biphalin: correlation with opioid receptor density and mechanism of CNS entry. J Neurochem. 1997;69:1236–1245. doi: 10.1046/j.1471-4159.1997.69031236.x. [DOI] [PubMed] [Google Scholar]
  • 26.Mollica A, Davis P, Ma SW, Porreca F, Lai J, Hruby VJ. Synthesis and biological activity of the first cyclic biphalin analogues. Bioorg Med Chem Lett. 2006;16:367–372. doi: 10.1016/j.bmcl.2005.09.080. [DOI] [PubMed] [Google Scholar]
  • 27.Bryant SD, Jinsmaa Y, Salvadori S, Okada Y, Lazarus LH. Dmt and opioid peptides: a potent alliance. Biopolymers. 2003;71:86–102. doi: 10.1002/bip.10399. [DOI] [PubMed] [Google Scholar]
  • 28.Balboni G, Guerrini R, Salvadori S, et al. Evaluation of the Dmt-Tic pharmacophore: conversion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties. J Med Chem. 2002;45:713–720. doi: 10.1021/jm010449i. [DOI] [PubMed] [Google Scholar]
  • 29.Okada Y, Fujita Y, Motoyama T, et al. Structural studies of [2′,6′-dimethyl-L-tyrosinel]endomorphin-2 analogues: enhanced activity and cis orientation of the Dmt-Pro amide bond. Bioorg Med Chem. 2003;11:1983–1994. doi: 10.1016/S0968-0896(03)00068-3. [DOI] [PubMed] [Google Scholar]
  • 30.Fujita Y, Tsuda Y, Li T, et al. Development of potent bifunctional endomorphin-2 analogues with mixed mu-/delta-opioid agonist and delta-opioid antagonist properties. J Med Chem. 2004;47:3591–3599. doi: 10.1021/jm030649p. [DOI] [PubMed] [Google Scholar]
  • 31.Balboni G, Cocco MT, Salvadori S, et al. From the potent and selective mu opioid receptor agonist H-Dmt-D-Arg-Phe-Lys-NH(2) to the potent delta antagonist H-Dmt-Tic-Phe-Lys(Z)-OH. J Med Chem. 2005;48:5608–5611. doi: 10.1021/jm0504959. [DOI] [PubMed] [Google Scholar]
  • 32.Calderon SN, Coop A. SNC 80 and related delta opioid agonists. Curr Pharm Des. 2004;10:733–742. doi: 10.2174/1381612043453054. [DOI] [PubMed] [Google Scholar]
  • 33.Eguchi M. Recent advances in selective opioid receptor agonists and antagonists. Med Res Rev. 2004;24:182–212. doi: 10.1002/med.10059. [DOI] [PubMed] [Google Scholar]
  • 34.O'Neill SJ, Collins MA, Pettit HO, McNutt RW, Chang KJ. Antagonistic modulation between the delta opioid agonist BW373U86 and the mu opioid agonist fentanyl in mice. J Pharmacol Exp Ther. 1997;282:271–277. [PubMed] [Google Scholar]
  • 35.Lee PH, McNutt RW, Chang KJ. A nonpeptidic delta opioid receptor agonist, BW373U86, attenuates the development and expression of morphine abstinence precipitated by naloxone in rat. J Pharmacol Exp Ther. 1993;267:883–887. [PubMed] [Google Scholar]
  • 36.Su YF, McNutt RW, Chang KJ. Delta-opioid ligands reverse alfentanil-induced respiratory depression but not antino ciception. J Pharmacol Exp Ther. 1998;287:815–823. [PubMed] [Google Scholar]
  • 37.Gengo PJ, Pettit HO, O'Neill SJ, et al. DIP-3290 [(+)-3-((alpha-R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. I. A mixed opioid agonist with potent antinociceptive activity. J Pharmacol Exp Ther. 2003;307:1221–1226. doi: 10.1124/jpet.103.054361. [DOI] [PubMed] [Google Scholar]
  • 38.Gengo PJ, Pettit HO, O'Neill SJ, Su YF, McNutt R, Chang KJ. DPI-3290[(+)-3-((alpha-R)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. II. A mixed opioid agonist with potent antinociceptive activity and limited effects on respiratory function. J Pharmacol Exp Ther. 2003;307:1227–1233. doi: 10.1124/jpet.103.054429. [DOI] [PubMed] [Google Scholar]
  • 39.Lattanzi R, Spetea M, Schullner F, et al. Synthesis and biological evaluation of 14-alkoxymorphinans. 22.(1) Influence of the 14-alkoxy group and the substitution in position 5 in 14-alkoxymorphinan-6-ones on in vitro and in vivo activities. J Med Chem. 2005;48:3372–3378. doi: 10.1021/jm040894o. [DOI] [PubMed] [Google Scholar]
  • 40.Grundt P, Martinez-Bermejo F, Lewis JW, Husbands SM. Opioid binding and in vitro profiles of a series of 4-hydroxy-3-methoxyindolomorphinans. Transformation of a delta-selective ligand into a high affinity kappa-selective ligand by introduction of a 5, 14-substituted bridge. J Med Chem. 2003;46:3174–3177. doi: 10.1021/jm030801n. [DOI] [PubMed] [Google Scholar]
  • 41.Grundt P, Jales AR, Traynor JR, Lewis JW, Husbands SM. 14-amino, 14-alkylamino, and 14-acylamino analogs of oxymorphindole. Differential effects on opioid receptor binding and functional profiles. J Med Chem. 2003;46:1563–1566. doi: 10.1021/jm021073r. [DOI] [PubMed] [Google Scholar]
  • 42.Abdelhamid EE, Sultana M, Portoghese PS, Takemori AE. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther. 1991;258:299–303. [PubMed] [Google Scholar]
  • 43.Hepburn MJ, Little PJ, Gingras J, Kuhn CM. Differential effects of naltrindole on morphine-induced tolerance and physical dependence in rats. J Pharmacol Exp Ther. 1997;281:1350–1356. [PubMed] [Google Scholar]
  • 44.Fundytus ME, Schiller PW, Shapiro M, Weltrowska G, Coderre TJ. Attenuation of morphine tolerance and dependence with the highly selective delta-opioid receptor antagonist TIPP[psi] Eur J Pharmacol. 1995;286:105–108. doi: 10.1016/0014-2999(95)00554-X. [DOI] [PubMed] [Google Scholar]
  • 45.Kest B, Lee CE, McLemore GL, Inturrisi CE. An antisense oligodeoxynucleotide to the delta opioid receptor (DOR-1) inhibits morphine tolerance and acute dependence in mice. Brain Res Bull. 1996;39:185–188. doi: 10.1016/0361-9230(95)02092-6. [DOI] [PubMed] [Google Scholar]
  • 46.Suzuki T, Ikeda H, Tsuji M, Misawa M, Narita M, Tseng LF. Antisense oligodeoxynucleotide to delta opioid receptors attenuates morphine dependence in mice. Life Sci. 1997;61:PL165–PL170. doi: 10.1016/S0024-3205(97)00373-1. [DOI] [PubMed] [Google Scholar]
  • 47.Sanchez-Blazquez P, Garcia-Espana A, Garzon J. Antisense oligodeoxynucleotides to opioid mu and delta receptors reduced morphine dependence in mice: role of delta-2 opioid receptors. J Pharmacol Exp Ther. 1997;280:1423–1431. [PubMed] [Google Scholar]
  • 48.Zhu Y, King MA, Schuller AG, et al. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron. 1999;24:243–252. doi: 10.1016/S0896-6273(00)80836-3. [DOI] [PubMed] [Google Scholar]
  • 49.Roy S, Guo X, Kelschenbach J, Liu Y, Loh HH. In vivo activation of a mutant mu-opioid receptor by naltrexone produces a potent analgesic effect but no tolerance: role of mu-receptor activation and delta-receptor blockade in morphine tolerance. J Neurosci. 2005;25:3229–3233. doi: 10.1523/JNEUROSCI.0332-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Freye E, Latasch L, Portoghese PS. The delta receptor is involved in sufentanil-induced respiratory depression-opioid subreceptors mediate different effects. Eur J Anaesthesiol. 1992;9:457–462. [PubMed] [Google Scholar]
  • 51.Foxx-Orenstein AE, Jin JG, Grider JR. 5-HT4 receptor agonists and delta-opioid receptor antagonists act synergistically to stimulate colonic propulsion. Am J Physiol. 1998;275:G979–G983. doi: 10.1152/ajpgi.1998.275.5.G979. [DOI] [PubMed] [Google Scholar]
  • 52.Schmidt R, Vogel D, Mrestani-Klaus C, et al. Cyclic betacasomorphin analogues with mixed mu agonist/delta antagonist properties: synthesis, pharmacological characterization, and conformational aspects. J Med Chem. 1994;37:1136–1144. doi: 10.1021/jm00034a011. [DOI] [PubMed] [Google Scholar]
  • 53.Schiller PW, Fundytus ME, Merovitz L, et al. The opioid mu agonist/delta antagonist DIPP-NH(2)[Psi] produces a potent analgesic effect, no physical dependence, and less tolerance than morphine in rats. J Med Chem. 1999;42:3520–3526. doi: 10.1021/jm980724+. [DOI] [PubMed] [Google Scholar]
  • 54.Weltrowska G, Lemieux C, Chung NN, Schiller PW. A chimeric opioid peptide with mixed mu agonist/delta antagonist properties. J Pept Res. 2004;63:63–68. doi: 10.1111/j.1399-3011.2003.00108.x. [DOI] [PubMed] [Google Scholar]
  • 55.Santagada V, Balboni G, Caliendo G, et al. Assessment of substitution in the second pharmacophore of Dmt-Tic analogues. Bioorg Med Chem Lett. 2000;10:2745–2748. doi: 10.1016/S0960-894X(00)00569-2. [DOI] [PubMed] [Google Scholar]
  • 56.Salvadori S, Guerrini R, Balboni G, et al. Further studies on the Dmt-Tic pharmacophore: hydrophobic substituents at the C-terminus endow delta antagonists to manifest mu agonism or mu antagonism. J Med Chem. 1999;42:5010–5019. doi: 10.1021/jm990165m. [DOI] [PubMed] [Google Scholar]
  • 57.Balboni G, Salvadori S, Guerrini R, et al. Potent delta-opioid receptor agonists containing the Dmt-Tic pharmacophore. J Med Chem. 2002;45:5556–5563. doi: 10.1021/jm020336e. [DOI] [PubMed] [Google Scholar]
  • 58.Ananthan S, Johnson CA, Carter RL, et al. Synthesis, opioid receptor binding, and bioassay of naltrindole analogues substituted in the indolic benzene moiety. J Med Chem. 1998;41:2872–2881. doi: 10.1021/jm980083i. [DOI] [PubMed] [Google Scholar]
  • 59.Ananthan S, Kezar HS, Carter RL, et al. Synthesis, opioid receptor binding, and biological activities of naltrexone-derived pyrido- and pyrimidomorphinans. J Med Chem. 1999;42:3527–3538. doi: 10.1021/jm990039i. [DOI] [PubMed] [Google Scholar]
  • 60.Wells JL, Bartlett JL, Ananthan S, Bilsky EJ. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antin ociceptive tolerance and attenuates morphine physical dependence. J Pharmacol Exp Ther. 2001;297:597–605. [PubMed] [Google Scholar]
  • 61.Xu H, Lu YF, Rice KC, Ananthan S, Rothman RB. SoRI 9409, a nonpeptide opioid mu receptor agonist/delta receptor antagonist, fails to stimulate [35S]-GTP-gamma-S binding at cloned opioid receptors. Brain Res Bull. 2001;55:507–511. doi: 10.1016/S0361-9230(01)00550-0. [DOI] [PubMed] [Google Scholar]
  • 62.Ananthan S, Khare NK, Saini SK, et al. Identification of opioid ligands possessing mixed mu agonist/delta antagonist activity among pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone. J Med Chem. 2004;47:1400–1412. doi: 10.1021/jm030311v. [DOI] [PubMed] [Google Scholar]
  • 63.Srivastava SK, Husbands SM, Aceto MD, Miller CN, Traynor JR, Lewis JW. 4′-Arylpyrrolomorphinans: effect of a pyrrolo-N-benzyl substituent in enhancing delta-opioid antagonist activity. J Med Chem. 2002;45:537–540. doi: 10.1021/jm010841w. [DOI] [PubMed] [Google Scholar]
  • 64.Portoghese PS. Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends Pharmacol Sci. 1989;10:230–235. doi: 10.1016/0165-6147(89)90267-8. [DOI] [PubMed] [Google Scholar]
  • 65.Portoghese PS, Edward E. Smissman-Bristol-Myers Squibb Award Address. The role of concepts in structure-activity relationship studies of opioid ligands. J Med Chem. 1992;35:1927–1937. doi: 10.1021/jm00089a001. [DOI] [PubMed] [Google Scholar]
  • 66.Portoghese PS. From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. J Med Chem. 2001;44:2259–2269. doi: 10.1021/jm010158+. [DOI] [PubMed] [Google Scholar]
  • 67.Daniels DJ, Kulkarni A, Xie Z, Bhushan RG, Portoghese PS. A bivalent ligand (KDAN-18) containing delta-antagonist and kappa-agonist pharmacophores bridges delta2 and kappal opioid receptor phenotypes. J Med Chem. 2005;48:1713–1716. doi: 10.1021/jm034234f. [DOI] [PubMed] [Google Scholar]
  • 68.Lenard NR, Moore JB, Daniels DJ, Portoghese PS, Roerig SC. Bivalent Ligands With Mu Agonist and Delta Antagonist Pharmacophores: Spacer Length Dependence of Tolerance and Physical Dependence Suggests Associated Mu and Delta Receptors [abstract].Neuroscience [Society for Neuroscience, Abstract Viewer and Itinerary Planner]. 2004: Abstract 406.10.
  • 69.Daniels DJ, Lenard NR, Etienne CL, et al. Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacopores in a bivalent ligand series. Proc Natl Acad Sci USA. 2005;102:19208–19213. doi: 10.1073/pnas.0506627102. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES