Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 Mar 24;8(1):E204–E221. doi: 10.1208/aapsj080125

Selectivity and potency of cyclin-dependent kinase inhibitors

Jayalakshmi Sridhar 1, Nagaraju Akula 1, Nagarajan Pattabiraman 1,2,
PMCID: PMC2751441  PMID: 16584130

Abstract

Members of the cyclin-dependent kinase (CDK) family play key roles in various cellular processes. There are 11 members of the CDK family known till now. CDKs are activated by forming noncovalent complexes with cyclins such as A-, B-, C-, D- (D1, D2, and D3), and E-type cyclins. Each isozyme of this family is responsible for particular aspects (cell signaling, transcription, etc) of the cell cycle, and some of the CDK isozymes are specific to certain kinds of tissues. Aberrant expression and overexpression of these kinases are evidenced in many disease conditions. Inhibition of isozymes of CDKs specifically can yield beneficiary treatment modalities with minimum side effects. More than 80 3-dimensional structures of CDK2, CDK5, and CDK6 complexed with inhibitors have been published. This review provides an understanding of the structural aspects of CDK isozymes and binding modes of various known CDK inhibitors so that these kinases can be better targeted for drug discovery and design. The amino acid residues that constitute the cyclin binding region, the substrate binding region, and the area around the adenosine triphosphate (ATP) binding site have been compared for CDK isozymes. Those amino acids at the ATP binding site that could be used to improve the potency and subtype specificity have been described.

Keywords: cyclin-dependent kinases, cell cycle, CDK inhibitors, structure-based design/discovery, ATP binding site, cyclin binding peptides

Full Text

The Full Text of this article is available as a PDF (386.5 KB).

References

  • 1.Noble MEM, Endicott JA, Johnson LN. Protein kinase inhibitors: insights into drug design from structure. Science. 2004;303:1800–1805. doi: 10.1126/science.1095920. [DOI] [PubMed] [Google Scholar]
  • 2.Karin M, Hunter T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol. 1995;5:747–757. doi: 10.1016/S0960-9822(95)00151-5. [DOI] [PubMed] [Google Scholar]
  • 3.Johnson GL, Lapadat R. Mitogen activated protein kinase pathways mediated by ERK, JNK and p38 protein kinases. Science. 2002;298:1911–1912. doi: 10.1126/science.1072682. [DOI] [PubMed] [Google Scholar]
  • 4.Fabbro D, Ruetz S, Buchdunger E, et al. Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacol Ther. 2002;93:79–98. doi: 10.1016/S0163-7258(02)00179-1. [DOI] [PubMed] [Google Scholar]
  • 5.Geschwind DH. Tau phosphorylation, tangles, and neurodegeneration: the chicken or the egg. Neuron. 2003;40:457–460. doi: 10.1016/S0896-6273(03)00681-0. [DOI] [PubMed] [Google Scholar]
  • 6.Cohen P. Protein kinases: the major drug targets of the twenty-first century? Nat Rev Drug Discov. 2002;1:309–315. doi: 10.1038/nrd773. [DOI] [PubMed] [Google Scholar]
  • 7.Dancey J, Sausville EA. Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov. 2003;2:296–313. doi: 10.1038/nrd1066. [DOI] [PubMed] [Google Scholar]
  • 8.Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  • 9.Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science. 2002;298:1912–1934. doi: 10.1126/science.1075762. [DOI] [PubMed] [Google Scholar]
  • 10.Pines J. Cyclins and cyclin-dependent kinases: theme and variations. Adv Cancer Res. 1995;66:181–212. doi: 10.1016/s0065-230x(08)60254-7. [DOI] [PubMed] [Google Scholar]
  • 11.Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261–291. doi: 10.1146/annurev.cellbio.13.1.261. [DOI] [PubMed] [Google Scholar]
  • 12.Paglini G, Caceres A. The role of the Cdk5-p35 kinase in neuronal development. Eur J Biochem. 2001;268:1528–1533. doi: 10.1046/j.1432-1327.2001.02023.x. [DOI] [PubMed] [Google Scholar]
  • 13.Akoulitchev S, Chuikov S, Reinberg D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature. 2000;407:102–106. doi: 10.1038/35024111. [DOI] [PubMed] [Google Scholar]
  • 14.Sano M, Schneider MD. Cyclins that don't cycle: cyclin T/cyclin-dependent kinase-9 determines cardiac muscle cell size. Cell Cycle. 2003;2:99–104. doi: 10.4161/cc.2.2.332. [DOI] [PubMed] [Google Scholar]
  • 15.Shuttleworth J. The regulation and functions of cdk7. Prog Cell Cycle Res. 1995;1:229–240. doi: 10.1007/978-1-4615-1809-9_18. [DOI] [PubMed] [Google Scholar]
  • 16.Kasten M, Giordano A. Cdk 10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene. 2001;20:1832–1838. doi: 10.1038/sj.onc.1204295. [DOI] [PubMed] [Google Scholar]
  • 17.Ren S, Rollins BJ. Cyclin C/Cdk3 promotes Rb-dependent G0 exit. Cell. 2004;117:239–251. doi: 10.1016/S0092-8674(04)00300-9. [DOI] [PubMed] [Google Scholar]
  • 18.Papst PJ, Sugiyama H, Nagasawa M, et al. Cdc2-cyclin B phosphorylates p70 S6 kinase on Ser411 at mitosis. J Biol Chem. 1998;273:15077–15084. doi: 10.1074/jbc.273.24.15077. [DOI] [PubMed] [Google Scholar]
  • 19.Long JJ, Leresche A, Kriwacki RW, et al. Repression of TFIIH transcriptional activity and TFIIH-associated cdk7 kinase activity at mitosis. Mol Cell Biol. 1998;18:1467–1476. doi: 10.1128/mcb.18.3.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Nigg EA. Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr Opin Cell Biol. 1996;8:312–317. doi: 10.1016/S0955-0674(96)80003-2. [DOI] [PubMed] [Google Scholar]
  • 21.Dowdy SF, Hinds PW, Louie K, et al. Physical interaction of the retinoblastoma protein with human D cyclins. Cell. 1993;73:499–511. doi: 10.1016/0092-8674(93)90137-F. [DOI] [PubMed] [Google Scholar]
  • 22.Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell. 1998;92:463–473. doi: 10.1016/S0092-8674(00)80940-X. [DOI] [PubMed] [Google Scholar]
  • 23.Pan W, Sun T, Hoess R, et al. Defining the minimal portion of the retinoblastoma protein that serves as an efficient substrate for CDK4 kinase/cyclin D1 complex. Carcinogenesis. 1998;19:765–769. doi: 10.1093/carcin/19.5.765. [DOI] [PubMed] [Google Scholar]
  • 24.Adams PD. Regulation of retinoblastoma tumor suppressor protein by cyclin/CDKs. Biochim Biophys Acta. 2001;1471:M123–M133. doi: 10.1016/s0304-419x(01)00019-1. [DOI] [PubMed] [Google Scholar]
  • 25.Harbour JW, Dean DC. The pRb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 2000;14:2393–2409. doi: 10.1101/gad.813200. [DOI] [PubMed] [Google Scholar]
  • 26.Sherr CJ. Cancer cell cycles revisited. Cancer Res. 2000;60:3689–3695. [PubMed] [Google Scholar]
  • 27.Sherr CJ, Roberts JM. Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–1512. doi: 10.1101/gad.13.12.1501. [DOI] [PubMed] [Google Scholar]
  • 28.Ekholm SV, Reed SI. Regulation of G1 cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol. 2000;12:676–684. doi: 10.1016/S0955-0674(00)00151-4. [DOI] [PubMed] [Google Scholar]
  • 29.Lee MH, Yang HY. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci. 2001;58:1907–1922. doi: 10.1007/PL00000826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Polyak K, Lee MH, Erdjument-Bromage H, et al. Cloning of p27Kipl, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994;78:59–66. doi: 10.1016/0092-8674(94)90572-X. [DOI] [PubMed] [Google Scholar]
  • 31.Russo AA, Jeffery PD, Patten AK, et al. Crystal structure of the p27Kipl cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature. 1996;382:325–331. doi: 10.1038/382325a0. [DOI] [PubMed] [Google Scholar]
  • 32.Cheng M, Olivier P, Diehl JA, et al. The p21 (Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999;18:1571–1583. doi: 10.1093/emboj/18.6.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Weinstein IB, Zhou P. Defects in cell cycle control genes in human cancer. In: Bertino, editor. Encyclopedia of Cancer. Vol 1. New York, NY: Academic Press; 1997. pp. 256–267. [Google Scholar]
  • 34.Sgambato A, Flamini G, Cittadini A, et al. Abnormalities in cell cycle control in cancer and their clinical implications. Tumori. 1998;84:421–433. doi: 10.1177/030089169808400401. [DOI] [PubMed] [Google Scholar]
  • 35.D'Amico M, Wu K, Fu M, et al. The Inhibitor of Cyclin-dependent Kinase 4a/Alternative Reading Frame (INK 4a/ARF) Locus Encoded Proteins p16INK4a and p19ARF Repress Cyclin D1 Transcription through distinct cis elements. Cancer Res. 2004;64:4122–4130. doi: 10.1158/0008-5472.CAN-03-2519. [DOI] [PubMed] [Google Scholar]
  • 36.Miliani de Marval PL, Macias E, Rounbehler R, et al. Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol. 2004;24:7538–7547. doi: 10.1128/MCB.24.17.7538-7547.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Galaktionov K, Lee AK, Exkstein J, et al. Cdc25 phosphatases as potential human oncogenes. Science. 1995;269:1575–1577. doi: 10.1126/science.7667636. [DOI] [PubMed] [Google Scholar]
  • 38.Wu W, Fan Y-H, Kemp BL, et al. Over-expression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with over-expression of c-myc. Cancer Res. 1998;58:4082–4085. [PubMed] [Google Scholar]
  • 39.Park DS, Farinelli SE, Greene LA. Inhibitors of cyclin-dependent kinases promote survival of post-mitotic neuronally differentiated PC12 cells and sympathetic neurons. J Biol Chem. 1996;271:8161–8169. doi: 10.1074/jbc.271.14.8161. [DOI] [PubMed] [Google Scholar]
  • 40.Dhavan R, Tsai LH. A decade of CDK5. Nat Rev Mol Cell Biol. 2001;2:749–759. doi: 10.1038/35096019. [DOI] [PubMed] [Google Scholar]
  • 41.Gupta A, Tsai LH. Cyclin-dependent kinase 5 and neuronal migration in the neocortex. Neurosignals. 2003;12:173–179. doi: 10.1159/000074618. [DOI] [PubMed] [Google Scholar]
  • 42.Ko J, Humbert S, Bronson RT, et al. p35 and p39 are essential for cdk5 function during neurodevelopment. J Neurosci. 2001;21:6758–6771. doi: 10.1523/JNEUROSCI.21-17-06758.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Cheng K, Ip NY. Cdk5: a new player at synapses. Neurosignals. 2003;12:180–190. doi: 10.1159/000074619. [DOI] [PubMed] [Google Scholar]
  • 44.Bibb JA. Role of cdk5 in neuronal signaling, plasticity and drug abuse. Neurosignals. 2003;12:191–199. doi: 10.1159/000074620. [DOI] [PubMed] [Google Scholar]
  • 45.Nguyen MD, Julien JP. Cyclin-dependent kinase 5 in amyotrophic lateral sclerosis. Neurosignals. 2003;12:215–220. doi: 10.1159/000074623. [DOI] [PubMed] [Google Scholar]
  • 46.Lau LF, Ahlijanian MK. Role of CDK5 in the pathogenesis of Alzheimer's disease. Neurosignals. 2003;12:209–214. doi: 10.1159/000074622. [DOI] [PubMed] [Google Scholar]
  • 47.Smith PD, Crocker SJ, Jackson-Lewis V, et al. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci USA. 2003;100:13650–13655. doi: 10.1073/pnas.2232515100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Bu B, Li J, Davies P, et al. Deregulation of CDK5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci. 2002;22:6515–6525. doi: 10.1523/JNEUROSCI.22-15-06515.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Morgan DO. The dynamics of cyclin-dependent kinase structure. Curr Opin Cell Biol. 1996;8:767–772. doi: 10.1016/S0955-0674(96)80076-7. [DOI] [PubMed] [Google Scholar]
  • 50.Chen J, Saha P, Kornbluth S, et al. Cyclin binding motifs are essential for the function of p21CIP1. Mol Cell Biol. 1996;16:4673–4682. doi: 10.1128/mcb.16.9.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.De Bondt HL, Rosenblatt J, Jancarik J, et al. Crystal structure of cyclin-dependent kinase 2. Nature. 1993;363:595–602. doi: 10.1038/363595a0. [DOI] [PubMed] [Google Scholar]
  • 52.Jeffrey PD, Russo AA, Polyak K, et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature. 1995;376:313–320. doi: 10.1038/376313a0. [DOI] [PubMed] [Google Scholar]
  • 53.Higgins DG, Bleasby AJ, Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992;8:189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  • 54.Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Schulze-Gahmen U, Brandsen J, Jones HD, et al. Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins. 1995;22:378–391. doi: 10.1002/prot.340220408. [DOI] [PubMed] [Google Scholar]
  • 56.Wu SY, McNae I, Kontopidis G, et al. Discovery of a novel family of Cdk inhibitors with the program LIDAEUS: structural basis for ligand-induced disordering of the activation loop. Structure. 2003;11:399–410. doi: 10.1016/S0969-2126(03)00060-1. [DOI] [PubMed] [Google Scholar]
  • 57.Brown NR, Noble ME, Lawrie AM, et al. Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem. 1999;274:8746–8756. doi: 10.1074/jbc.274.13.8746. [DOI] [PubMed] [Google Scholar]
  • 58.Schulze-Gahmen U, De Bondt HL, Kim SH. High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design. J Med Chem. 1996;39:4540–4546. doi: 10.1021/jm960402a. [DOI] [PubMed] [Google Scholar]
  • 59.Card GL, Knowles P, Laman H, et al. Crystal structure of a gamma-herpesvirus cyclin-cdk complex. EMBO J. 2000;19:2877–2888. doi: 10.1093/emboj/19.12.2877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Russo AA, Jeffrey PD, Pavletich NP. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol. 1996;3:696–700. doi: 10.1038/nsb0896-696. [DOI] [PubMed] [Google Scholar]
  • 61.Jeffrey PD, Russo AA, Polyak K, et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature. 1995;376:313–320. doi: 10.1038/376313a0. [DOI] [PubMed] [Google Scholar]
  • 62.Hardcastle IR, Arris CE, Bentley J, et al. N2-substituted O6-cyclohexylmethylguanine derivatives: potent inhibitors of cyclin-dependent kinases 1 and 2. J Med Chem. 2004;47:3710–3722. doi: 10.1021/jm0311442. [DOI] [PubMed] [Google Scholar]
  • 63.Sayle KL, Bentley J, Boyle FT, et al. Structure-based design of 2-arylamino-4-cyclohexyl methyl-5-nitroso-6-aminopyrimidine inhibitors of cyclin-dependent kinases 1 and 2. Bioorg Med Chem Lett. 2003;13:3079–3082. doi: 10.1016/S0960-894X(03)00651-6. [DOI] [PubMed] [Google Scholar]
  • 64.Johnson LN, De Moliner E, Brown NR, et al. Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2. Pharmacol Ther. 2002;93:113–124. doi: 10.1016/S0163-7258(02)00181-X. [DOI] [PubMed] [Google Scholar]
  • 65.Davis ST, Benson BG, Bramson HN, et al. Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors. Science. 2001;291:134–137. doi: 10.1126/science.291.5501.134. [DOI] [PubMed] [Google Scholar]
  • 66.Davies TG, Tunnah P, Meijer L, et al. Inhibitor binding to active and inactive cdk2: the crystal structure of cdk2-cyclin A/indirubin-5-sulphonate. Structure. 2001;9:389–397. doi: 10.1016/S0969-2126(01)00598-6. [DOI] [PubMed] [Google Scholar]
  • 67.Lawrie AM, Noble ME, Tunnah P, et al. Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. Nat Struct Biol. 1997;4:796–801. doi: 10.1038/nsb1097-796. [DOI] [PubMed] [Google Scholar]
  • 68.Gray NS, Wodicka L, Thunnissen AM, et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science. 1998;281:533–538. doi: 10.1126/science.281.5376.533. [DOI] [PubMed] [Google Scholar]
  • 69.Shewchuk L, Hassell A, Wisely B, et al. Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: X-ray crystallographic studies of 4-anilinoquinazolines bound to cyclin-dependent kinase 2 and P38 kinase. J Med Chem. 2000;43:133–138. doi: 10.1021/jm990401t. [DOI] [PubMed] [Google Scholar]
  • 70.Meijer L, Thunissen AM, White AW, et al. Inhibition of cyclin-dependent kinases, gsk-3beta and ck1 by hymenialdisine, a marine sponge constituent. Chem Biol. 2000;7:51–63. doi: 10.1016/S1074-5521(00)00063-6. [DOI] [PubMed] [Google Scholar]
  • 71.Arris CE, Boyle FT, Calvert AH, et al. Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles. J Med Chem. 2000;43:2797–2804. doi: 10.1021/jm990628o. [DOI] [PubMed] [Google Scholar]
  • 72.Dreyer MK, Borcherding DR, Dumont JA, et al. Crystal structure of human cyclin-dependent kinase 2 in complex with the adenine-derived inhibitor H717. J Med Chem. 2001;44:524–530. doi: 10.1021/jm001043t. [DOI] [PubMed] [Google Scholar]
  • 73.Ikuta M, Kamata K, Fukasawa K, et al. Crystallographic approach to identification of cyclin-dependent kinase 4 (cdk4)-specific inhibitors by using cdk4 mimic cdk2 protein. J Biol Chem. 2001;276:27548–27554. doi: 10.1074/jbc.M102060200. [DOI] [PubMed] [Google Scholar]
  • 74.Gibson AE, Arris CE, Bentley J, et al. Probing the ATP ribose-binding domain of cyclin-dependent kinases 1 and 2 with O(6)-substituted guanine derivatives. J Med Chem. 2002;45:3381–3393. doi: 10.1021/jm020056z. [DOI] [PubMed] [Google Scholar]
  • 75.Beattie JF, Breault GA, Ellston RPA, et al. Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 1: identification and optimization of substituted 4,6-Bis anilino pyrimidines. Bioorg Med Chem Lett. 2003;13:2955–2960. doi: 10.1016/S0960-894X(03)00202-6. [DOI] [PubMed] [Google Scholar]
  • 76.Davies TG, Bentley J, Arris CE, et al. Structure-based design of a potent purine-based cyclin-dependent kinase inhibitor. Nat Struct Biol. 2002;9:745–749. doi: 10.1038/nsb842. [DOI] [PubMed] [Google Scholar]
  • 77.Bramson HN, Corona J, Davis ST, et al. Oxindole-based inhibitors of cyclin-dependent kinase 2 (Cdk2): design, synthesis, enzymatic activities, and x-ray crystallographic analysis. J Med Chem. 2001;44:4339–4358. doi: 10.1021/jm010117d. [DOI] [PubMed] [Google Scholar]
  • 78.Anderson M, Beattie J, Breault G, et al. Imidazo[1,2-A]pyridines: a potent and selective class of cyclin-dependent kinase inhibitors identified through structure-based hydridization. Bioorg Med Chem Lett. 2003;13:3021–3026. doi: 10.1016/S0960-894X(03)00638-3. [DOI] [PubMed] [Google Scholar]
  • 79.Liu JJ, Dermatakis A, Lukacs CM, et al. 3,5,6-Trisubstituted naphtostyrils as Cdk2 inhibitors. Bioorg Med Chem Lett. 2003;13:2465–2468. doi: 10.1016/S0960-894X(03)00488-8. [DOI] [PubMed] [Google Scholar]
  • 80.Moshinsky DJ, Bellamacina CR, Boisvert DC, et al. Su9516: biochemical analysis of Cdk inhibition and crystal structure in complex with Cdk2. Biochem Biophys Res Commun. 2003;310:1026–1031. doi: 10.1016/j.bbrc.2003.09.114. [DOI] [PubMed] [Google Scholar]
  • 81.Wang S, Meades C, Wood G, et al. 2-Anilino-4-(thiazol-5-Yl)pyrimidine Cdk inhibitors: synthesis, SAR analysis, X-ray crystallography, and biological activity. J Med Chem. 2004;47:1662–1675. doi: 10.1021/jm0309957. [DOI] [PubMed] [Google Scholar]
  • 82.Hamdouchi C, Keyser H, Collins E, et al. The discovery of a new structural class of cyclin-dependent kinase inhibitors, aminoimidazo. Mol Cancer Ther. 2004;3:1–9. [PubMed] [Google Scholar]
  • 83.Luk K-C, Simcox ME, Schutt A, et al. A new series of potent oxindole inhibitors of cdk2. Bioorg Med Chem Lett. 2004;14:913–917. doi: 10.1016/j.bmcl.2003.12.009. [DOI] [PubMed] [Google Scholar]
  • 84.Byth K, Cooper N, Culshaw J, et al. Imidazo[1,2-B]pyridazines: a potent and selective class of cyclin-dependent kinase inhibitors. Bioorg Med Chem Lett. 2004;14:2249–2252. doi: 10.1016/j.bmcl.2004.02.008. [DOI] [PubMed] [Google Scholar]
  • 85.Russo AA, Jeffrey PD, Patten AK, et al. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature. 1996;382:325–331. doi: 10.1038/382325a0. [DOI] [PubMed] [Google Scholar]
  • 86.Brown NR, Noble ME, Endicott JA, et al. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol. 1999;1:438–443. doi: 10.1038/15674. [DOI] [PubMed] [Google Scholar]
  • 87.Cook A, Lowe ED, Chrysina ED, et al. Structural studies on phospho-Cdk2/cyclin A bound to nitrate, a transition state analogue: implications for the protein kinase mechanism. Biochemistry. 2002;41:7301–7311. doi: 10.1021/bi0201724. [DOI] [PubMed] [Google Scholar]
  • 88.Mapelli M, Massimiliano L, Crovace C, et al. Mechanism of Cdk5/P25 binding by Cdk inhibitors. J Med Chem. 2005;48:671–679. doi: 10.1021/jm049323m. [DOI] [PubMed] [Google Scholar]
  • 89.Tarricone C, Dhavan R, Peng J, et al. Structure and regulation of the Cdk5-P25(Nck5A) complex. Mol Cell. 2001;8:657–669. doi: 10.1016/S1097-2765(01)00343-4. [DOI] [PubMed] [Google Scholar]
  • 90.Schulze-Gahmen U, Kim SH. Structural basis for Cdk6 activation by a virus-encoded cyclin. Nat Struct Biol. 2002;9:177–181. doi: 10.1038/nsb756. [DOI] [PubMed] [Google Scholar]
  • 91.Russo AA, Tong L, Lee JO, et al. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumor suppressor p16INK4a. Nature. 1998;395:237–243. doi: 10.1038/26155. [DOI] [PubMed] [Google Scholar]
  • 92.Brotherton DH, Dhanaraj V, Wick S, et al. Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d. Nature. 1998;395:244–250. doi: 10.1038/26164. [DOI] [PubMed] [Google Scholar]
  • 93.Lu H, Chang DJ, Baratte B, et al. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J Med Chem. 2005;48:737–743. doi: 10.1021/jm049353p. [DOI] [PubMed] [Google Scholar]
  • 94.Jeffrey PD, Tong L, Pavletich NP. Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors. Genes Dev. 2000;14:3115–3125. doi: 10.1101/gad.851100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Lolli G, Lowe ED, Brown NR, et al. The crystal structure of human cdk7 and its protein recognition properties. Structure. 2004;12:2067–2079. doi: 10.1016/j.str.2004.08.013. [DOI] [PubMed] [Google Scholar]
  • 96.Kim KK, Chamberlin HM, Morgan DO, et al. Three-dimensional structure of human cyclin H, a positive regulator of the CDK-activating kinase. Nat Struct Biol. 1996;3:849–855. doi: 10.1038/nsb1096-849. [DOI] [PubMed] [Google Scholar]
  • 97.Schulze-Gahmen U, Jung JU, Kim SH. Crystal structure of a viral cyclin, a positive regulator of cyclin-dependent kinase 6. Structure. 1999;7:245–254. doi: 10.1016/S0969-2126(99)80035-5. [DOI] [PubMed] [Google Scholar]
  • 98.Venkataramani R, Swaminathan K, Marmorstein R. Crystal structure of the CDK4/6 inhibitory protein p18INK4c provides insights into ankyrin-like repeat structure/function and tumor-derived p16INK4 mutations. Nat Struct Biol. 1998;5:74–81. doi: 10.1038/nsb0198-74. [DOI] [PubMed] [Google Scholar]
  • 99.Venkataramani RN, Maclachlan TK, Chai X, et al. Structure-based design of P18Ink4C proteins with increased thermodynamic stability and cell cycle inhibitory activity. J Biol Chem. 2002;277:48827–48833. doi: 10.1074/jbc.M208061200. [DOI] [PubMed] [Google Scholar]
  • 100.Li J, Byeon I-J, Ericson K, et al. Tumor suppressor Ink4: determination of the solution structure of P18Ink4C and demonstration of the functional significance of loops in P18Ink4C and P16Ink4A. Biochemistry. 1999;38:2930–2940. doi: 10.1021/bi982286e. [DOI] [PubMed] [Google Scholar]
  • 101.Byeon IJ, Li J, Ericson K, et al. Tumor suppressor P16Ink4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol Cell. 1998;1:421–431. doi: 10.1016/S1097-2765(00)80042-8. [DOI] [PubMed] [Google Scholar]
  • 102.Luh FY, Archer SJ, Donnaille PJ, et al. Structure of the cyclin-dependent kinase inhibitor p19Ink4d. Nature. 1997;389:999–1003. doi: 10.1038/40202. [DOI] [PubMed] [Google Scholar]
  • 103.Yuan C, Li J, Selby TL, et al. Tumor suppressor Ink4: comparisons of conformational properties between P16Ink4A and P18Ink4C. J Mol Biol. 1999;294:201–211. doi: 10.1006/jmbi.1999.3231. [DOI] [PubMed] [Google Scholar]
  • 104.Yuan C, Selby TL, Li J, et al. Tumor suppressor Ink4: refinement of P16Ink4A structure and determination of P15Ink4B structure by comparative modeling and NMR data. Protein Sci. 2000;9:1120–1128. doi: 10.1110/ps.9.6.1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Holton S, Merckx A, Burgess D, et al. Structures of P falciparum PfPK5 test the CDK regulation paradigm and suggest mechanism of small molecule inhibition. Structure. 2003;11:1329–1337. doi: 10.1016/j.str.2003.09.020. [DOI] [PubMed] [Google Scholar]
  • 106.Kontopidis G, Andrews M, McInnes C, et al. Insights into cyclin groove recognition: complex crystal structures and inhibitor design through ligand exchange. Structure. 2003;11:1537–1546. doi: 10.1016/j.str.2003.11.006. [DOI] [PubMed] [Google Scholar]
  • 107.Andrews M, McInnes C, Kontopodis G, et al. Design, synthesis, biological activity and structural analysis of cyclic peptide inhibitors targeting the substrate recruitment site of cyclin-dependent kinase complexes. Org Biomol Chem. 2004;2:2735–2741. doi: 10.1039/b409157d. [DOI] [PubMed] [Google Scholar]
  • 108.Lowe E, Tews I, Cheng KY, et al. Specificity determinants of recruitment peptides bound to phospho-Cdk2/Cyclin A. Biochemistry. 2002;41:15625–15634. doi: 10.1021/bi0268910. [DOI] [PubMed] [Google Scholar]
  • 109.Song H, Hanlon N, Brown NR, et al. Phosphoprotein-protein interactiosn revealed by the crystal structure of kinase-associated phosphatase in complex with phospho-CDK2. Mol Cell. 2001;7:615–626. doi: 10.1016/S1097-2765(01)00208-8. [DOI] [PubMed] [Google Scholar]
  • 110.MAG . GeneMine/Look. Palo Alto, CA: e.M.A.G; 1999. [Google Scholar]
  • 111.MAG . GeneMine/Look, 3.5.2ed. Palo Alto, CA: Molecular Application Group; 1999. [Google Scholar]
  • 112.McGrath CF, Pattabiraman N, Kellogg GE, et al. Homology model of the CDK1/cyclin B complex. J Biomol Struct Dyn. 2005;22:493–502. doi: 10.1080/07391102.2005.10531227. [DOI] [PubMed] [Google Scholar]
  • 113.Gussio R, Zaharewitz DW, McGrath CF, et al. Structure-based design modifications of the paullone molecular scaffold for cyclin-dependent kinase inhibition. Anticancer Drug Des. 2000;15:53–66. [PubMed] [Google Scholar]
  • 114.Heiden W, Moeckel G, Brickmann J. A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces. J Comput Aided Mol Des. 1993;7:503–514. doi: 10.1007/BF00124359. [DOI] [PubMed] [Google Scholar]
  • 115.Vesely J, Havlicek L, Strnad M, et al. Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem. 1994;224:771–786. doi: 10.1111/j.1432-1033.1994.00771.x. [DOI] [PubMed] [Google Scholar]
  • 116.De Azevedo WF, Leclerc S, Meijer L, et al. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human CDK2 complexed with roscovitine. Eur J Biochem. 1997;243:518–526. doi: 10.1111/j.1432-1033.1997.0518a.x. [DOI] [PubMed] [Google Scholar]
  • 117.Ongkeko W, Ferguson DJ, Harris AL, et al. Inactivation of CDC2 increases the level of apoptosis induced by DNA damage. J Cell Sci. 1995;108:2897–2904. doi: 10.1242/jcs.108.8.2897. [DOI] [PubMed] [Google Scholar]
  • 118.Glab N, Labidi B, Qin LX, et al. Olomoucine, an inhibitor of the CDC2/CDK2 kinases activity, blocks plant cells at the G1 to S and G2 to M cell cycle transitions. FEBS Lett. 1994;353:207–211. doi: 10.1016/0014-5793(94)01035-8. [DOI] [PubMed] [Google Scholar]
  • 119.Meijer L. Chemical inhibitors of cyclin-dependent kinases. Trends Cell Biol. 1996;6:393–397. doi: 10.1016/0962-8924(96)10034-9. [DOI] [PubMed] [Google Scholar]
  • 120.Gadbois D, Hamaguchi JR, Swank RA, et al. Staurosporine is a potent inhibitor of p34cdc2 and p34cdc2-like kinases. Biochem Biophys Res Commun. 1992;184:80–85. doi: 10.1016/0006-291X(92)91160-R. [DOI] [PubMed] [Google Scholar]
  • 121.Pereira ER, Belin L, Sancelme M, et al. Structure-activity relationships in a series of substituted indolocarbazoles: topoisomerase I and protein kinase C inhibition and antitumoral and antimicrobial properties. J Med Chem. 1996;39:4471–4477. doi: 10.1021/jm9603779. [DOI] [PubMed] [Google Scholar]
  • 122.Wood L, Stoltz BM, Goodman SN. Total synthesis of (+)-RK-286c, (+)-MLR-52, (+)-staurosporine, and (+)-K252a. J Am Chem Soc. 1996;118:10656–10657. doi: 10.1021/ja9626143. [DOI] [Google Scholar]
  • 123.Sedlacek HH, Czech J, Nai KR, et al. Flavopiridol (L86 8275; NSC 649890), a new kinase inhibitor for tumor therapy. Int J Oncol. 1996;9:1143–1168. doi: 10.3892/ijo.9.6.1143. [DOI] [PubMed] [Google Scholar]
  • 124.Carlson BA, Dubay MM, Sausville EA, et al. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase CDK2 and CDK4 in human breast carcinoma cells. Cancer Res. 1996;56:2973–2978. [PubMed] [Google Scholar]
  • 125.Arris CE, Boyle FT, Calvert AH, et al. Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles. J Med Chem. 2000;43:2797–2804. doi: 10.1021/jm990628o. [DOI] [PubMed] [Google Scholar]
  • 126.Boschelli DH, Bdobrusin EM, Doherty AM, et al, inventors. Warner Lambert Co., assignee. Preparation of pyrido[2,3-d]pyrimidines and 4-aminopyrimidines as inhibitors of cellular proliferation. Patent WO9833798. August 6, 1998.
  • 127.Soni R, O'Reilly T, Furet P, et al. Selective in vivo and in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4. J Natl Cancer Inst. 2001;93:436–446. doi: 10.1093/jnci/93.6.436. [DOI] [PubMed] [Google Scholar]
  • 128.Kent LL, Hull-Campbell NE, Lau T, et al. Characterization of novel inhibitors of cyclin-dependent kinases. Biochem Biophys Res Commun. 1999;260:768–774. doi: 10.1006/bbrc.1999.0891. [DOI] [PubMed] [Google Scholar]
  • 129.Bramson HN, Corona J, Davis ST, et al. Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2) design, synthesis enzymatic activities. J Med Chem. 2004;44:4339–4358. doi: 10.1021/jm010117d. [DOI] [PubMed] [Google Scholar]
  • 130.Zaharevitz DW, Gussio R, Leost M, et al. Discovery and initial characterization of the paullones, a novel class of small-molecule inhibitors of cyclin-dependent kinases. Cancer Res. 1999;59:2566–2569. [PubMed] [Google Scholar]
  • 131.Schultz C, Link A, Leost M, et al. Paullones: a series of cyclin-dependent kinase inhibitors: synthesis, evaluation of CDK1/cyclin B inhibition, and in vitro antitumor activity. J Med Chem. 1999;42:2909–2919. doi: 10.1021/jm9900570. [DOI] [PubMed] [Google Scholar]
  • 132.Honma T, Hayashi K, Aoyama T, et al. Structure-based generation of a new class of potent Cdk4 inhibitors: new de novo design strategy and library design. J Med Chem. 2001;44:4615–4627. doi: 10.1021/jm0103256. [DOI] [PubMed] [Google Scholar]
  • 133.Vesely J, Havlicek L, Strnad M, et al. Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem. 1994;224:771–786. doi: 10.1111/j.1432-1033.1994.00771.x. [DOI] [PubMed] [Google Scholar]
  • 134.Kim KS, Sack JS, Tokarski JS, et al. Thio- and oxoflavopiridols, cyclin-dependent kinase 1-selective inhibitors: synthesis and biological effects. J Med Chem. 2000;43:4126–4134. doi: 10.1021/jm000231g. [DOI] [PubMed] [Google Scholar]
  • 135.Bramson HN, Corona J, Davis ST, et al. Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2): design, synthesis, enzymatic activities, and X-ray crystallographic analysis. J Med Chem. 2001;44:4339–4358. doi: 10.1021/jm010117d. [DOI] [PubMed] [Google Scholar]
  • 136.Sielecki TM, Johnson TL, Liu J, et al. Quinazolines as cyclin-dependent kinase inhibitors. Bioorg Med Chem Lett. 2001;11:1157–1160. doi: 10.1016/S0960-894X(01)00185-8. [DOI] [PubMed] [Google Scholar]
  • 137.Furet P, Meyer T, Strauss A, et al. Structure-based design and protein X-ray analysis of a protein kinase inhibitor. Bioorg Med Chem Lett. 2002;12:221–224. doi: 10.1016/S0960-894X(01)00715-6. [DOI] [PubMed] [Google Scholar]
  • 138.Misra RN, Xiao H, Rawlins DB, et al. 1H-Pyrazolo[3,4-b]pyridine inhibitors of cyclin-dependent kinases: highly potent 2, 6-difluorophenacyl analogues. Bioorg Med Chem Lett. 2003;13:2405–2408. doi: 10.1016/S0960-894X(03)00381-0. [DOI] [PubMed] [Google Scholar]
  • 139.Mesguiche V, Parsons RJ, Arris CE, et al. 4-Alkoxy-2,6-diaminopyrimidine derivatives: inhibitors of cyclin-dependent kinases 1 and 2. Bioorg Med Chem Lett. 2003;13:217–222. doi: 10.1016/S0960-894X(02)00884-3. [DOI] [PubMed] [Google Scholar]
  • 140.Sayle KL, Bentley J, Boyle FT, et al. Structure-based design of 2-arylamino-4-cyclohexylmethyl-5-nitroso-6-aminopyrimidine inhibitors of cyclin-dependent kinases 1 and 2. Bioorg Med Chem Lett. 2003;13:3079–3082. doi: 10.1016/S0960-894X(03)00651-6. [DOI] [PubMed] [Google Scholar]
  • 141.Jaramillo C, de Diego JE, Hamdouchi C, et al. Aminoimidazo[1,2-a]pyridines as a new structural class of cyclin-dependent kinase inhibitors. Part 1: design, synthesis, and biological evaluation. Bioorg Med Chem Lett. 2004;14:6095–6099. doi: 10.1016/j.bmcl.2004.09.053. [DOI] [PubMed] [Google Scholar]
  • 142.Helal CJ, Sanner MA, Cooper CB, et al. Discovery and SAR of 2-aminothiazole inhibitors of cyclin-dependent kinase 5/p25 as a potential treatment for Alzheimer's disease. Bioorg Med Chem Lett. 2004;14:5521–5525. doi: 10.1016/j.bmcl.2004.09.006. [DOI] [PubMed] [Google Scholar]
  • 143.Nugiel DA, Vidwans A, Dzierba CD. Parallel synthesis of acylsemicarbazide libraries: preparation of potent cyclin-dependent kinase (cdk) inhibitors. Bioorg Med Chem Lett. 2004;14:5489–5491. doi: 10.1016/j.bmcl.2004.09.023. [DOI] [PubMed] [Google Scholar]
  • 144.Pevarello P, Brasca MG, Amici R, et al. 3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents, I: lead finding. J Med Chem. 2004;47:3367–3380. doi: 10.1021/jm031145u. [DOI] [PubMed] [Google Scholar]
  • 145.Hamdouchi C, Zhong B, Mendoza J, et al. Structure-based design of a new class of highly selective aminoimidazo[1,2-a]pyridine-based inhibitors of cyclin-dependent kinases. Bioorg Med Chem Lett. 2005;15:1943–1947. doi: 10.1016/j.bmcl.2005.01.052. [DOI] [PubMed] [Google Scholar]
  • 146.Sondhi SM, Goyal RN, Lahoti AM, et al. Synthesis and biological evaluation of 2-thiopyrimidine derivatives. Bioorg Med Chem. 2005;13:3185–3195. doi: 10.1016/j.bmc.2005.02.047. [DOI] [PubMed] [Google Scholar]
  • 147.Verma S, Nagarathanm D, Shao J, et al. Substituted aminobenzimidazole pyrimidines as cyclin-dependent kinase inhibitors. Bioorg Med Chem Lett. 2005;15:1973–1977. doi: 10.1016/j.bmcl.2005.02.076. [DOI] [PubMed] [Google Scholar]
  • 148.Senderowicz AM. Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene. 2000;19:6600–6606. doi: 10.1038/sj.onc.1204085. [DOI] [PubMed] [Google Scholar]
  • 149.Huwe A, Mazitschek R, Giannis A. Small molecules as inhibitors of cyclin-dependent kinases. Angew Chem Int Ed Engl. 2003;42:2122–2138. doi: 10.1002/anie.200200540. [DOI] [PubMed] [Google Scholar]
  • 150.Pattabiraman N. Occluded molecular surface analysis of ligandmacromolecule contacts: application to HIV-1 protease-inhibitor complexes. J Med Chem. 1999;42:3821–3834. doi: 10.1021/jm980512c. [DOI] [PubMed] [Google Scholar]
  • 151.Pattabiraman N. Analysis of ligand-macromolecule contacts: computational methods. Curr Med Chem. 2002;9:609–621. doi: 10.2174/0929867024606957. [DOI] [PubMed] [Google Scholar]
  • 152.Wang C, Li Z, Fu M, et al. Signal transduction mediated by cyclin D1: from mitogens to cell proliferation: a molecular target with therapeutic potential. Cancer Treat Res. 2004;119:217–237. doi: 10.1007/1-4020-7847-1_11. [DOI] [PubMed] [Google Scholar]
  • 153.Payton M, Coats S. Cyclin E2, the cycle continues. Int J Biochem Cell Biol. 2002;34:315–320. doi: 10.1016/S1357-2725(01)00137-6. [DOI] [PubMed] [Google Scholar]
  • 154.Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. [DOI] [PubMed] [Google Scholar]
  • 155.Morgan DO. Principles of CDK regulation. Nature. 1995;374:131–134. doi: 10.1038/374131a0. [DOI] [PubMed] [Google Scholar]
  • 156.Benzeno S, Narla G, Allina J, et al. Cyclin-dependent kinase inhibition by the KLF6 tumor suppressor protein through interaction with cyclin D1. Cancer Res. 2004;64:3885–3891. doi: 10.1158/0008-5472.CAN-03-2818. [DOI] [PubMed] [Google Scholar]
  • 157.Hu X, Bryington M, Fisher AB, et al. Ubiquitin/proteasome-dependent degradation of D-type cyclins is linked to tumor necrosis factor-induced cell cycle arrest. J Biol Chem. 2002;277:16528–16537. doi: 10.1074/jbc.M109929200. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES