Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2007 Jul 20;9(3):E284–E297. doi: 10.1208/aapsj0903031

Biomarkers, metabonomics, and drug development: Can inborn errors of metabolism help in understanding drug toxicity?

Subrahmanyam Vangala 1,, Alfred Tonelli 1
PMCID: PMC2751476  PMID: 17915830

Abstract

Application of “omics” technology during drug discovery and development is rapidly evolving. This review evaluates the current status and future role of “metabonomics” as a tool in the drug development process to reduce the safety-related attrition rates and bridge the gaps between preclinical and clinical, and clinical and market. Particularly, the review looks at the knowledge gap between the pharmaceutical industry and pediatric hospitals, where metabonomics has been successfully applied to screen and treat newborn babies with inborn errors of metabolism. An attempt has been made to relate the clinical pathology associated with inborn errors of metabolism with those of drug-induced pathology. It is proposed that extending the metabonomic biomarkers used in pediatric hospitals, as “advanced clinical chemistry” for preclinical and clinical drug development, is immediately warranted for better safety assessment of drug candidates. The latest advances in mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy should help replace the traditional approaches of laboratory clinical chemistry and move the safety evaluation of drug candidates into the new millennium.

Keywords: Biomarkers, clinical chemistry, drug develoment, inborn errors of metabolism, metabonomics, toxicity

Full Text

The Full Text of this article is available as a PDF (602.5 KB).

References

  • 1.Kubinyi H. Drugh research—myths, hype and reality. Nat Rev Drug Discov. 2003;2:665–668. doi: 10.1038/nrd1156. [DOI] [PubMed] [Google Scholar]
  • 2.Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–715. doi: 10.1038/nrd1470. [DOI] [PubMed] [Google Scholar]
  • 3.Thurmann PA. Adverse drug reactions: diagnosis and assessment. Pathologie. 2006;27:6–12. doi: 10.1007/s00292-005-0805-y. [DOI] [PubMed] [Google Scholar]
  • 4.Li AP. A review of the common properties of drugs with idiosyncratic hepatotoxicity and the “multiple determinant hypothesis” for the manifestation of idiosyncratic drug toxicity. Chem Biol Interact. 2002;142:7–23. doi: 10.1016/S0009-2797(02)00051-0. [DOI] [PubMed] [Google Scholar]
  • 5.Park BK, Kitteringham NR, Powell H, Pirmohamed M. Advances in molecular toxicology—towards understanding idiosyncratic drug toxicity. Toxicology. 2000;153:39–60. doi: 10.1016/S0300-483X(00)00303-6. [DOI] [PubMed] [Google Scholar]
  • 6.Collins JM. Idiosyncratic drug toxicity. Chem Biol Interact. 2002;142:3–6. doi: 10.1016/S0009-2797(02)00050-9. [DOI] [PubMed] [Google Scholar]
  • 7.List of withdrawn drugs. Available at: http://en.wikipedia.org/wiki/List_of_withdrawn_drugs. Accessed June 27, 2007.
  • 8.Barrow PA, Waller P, Wise L. Comparison of hospital episodes with ‘drug-induces’ disorders and spontaneously reported adverse drug reactions. Br J Clin Pharmacol. 2005;61:233–237. doi: 10.1111/j.1365-2125.2005.02554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Vallano A, Cereza G, Pedros C, et al. Obstacles and solutions for spontaneous reporting of adverse drug reactions in the hospital. Br J Clin Pharmacol. 2005;60:653–658. doi: 10.1111/j.1365-2125.2005.02504.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Riedl MA, Casillas AM. Adverse drug reactions: types and treatment options. Am Fam Physician. 2003;68:1781–1790. [PubMed] [Google Scholar]
  • 11.Max B, Sherer R. Management of the adverse effects of antiretroviral therapy and medication adherence. CID. 2000;30:S96–S116. doi: 10.1086/313859. [DOI] [PubMed] [Google Scholar]
  • 12.Teweleit S, Kuschel U, Hippius M, Goettler M, Bornschein B. Manifestation and prevention of adverse drug reactions (ADR) in the pharmacotherapy of cardiovascular diseases. Med Klin. 2001;96:442–450. doi: 10.1007/PL00002226. [DOI] [PubMed] [Google Scholar]
  • 13.Bordet R, Gautier S, Lonet H, Dupuis B, Caron J. Analysis of the direct cost of adverse drug reactions in hospitalised patients. Eur J Clin Pharmacol. 2001;56:935–941. doi: 10.1007/s002280000260. [DOI] [PubMed] [Google Scholar]
  • 14.Duplantier C, Courtat-Bailly B, Moreau C, et al. Iatrogenic syncopes and malaises. Ann Cardiol Angeiol (Paris) 2004;53:320–324. doi: 10.1016/j.ancard.2004.09.011. [DOI] [PubMed] [Google Scholar]
  • 15.Light KP, Lovell AT, Butt H, et al. Adverse effects of neuromuscular blocking agents based on yellow card reporting in the U.K.: are there differences between males and females? Pharmacoepidemiol Drug Saf. 2006;15:151–160. doi: 10.1002/pds.1196. [DOI] [PubMed] [Google Scholar]
  • 16.Baillie TA. Future of toxicology-metabolic activation and drug design: challenges and opportunities in chemical toxicology. Chem Res Toxicol. 2006;19:889–893. doi: 10.1021/tx060062o. [DOI] [PubMed] [Google Scholar]
  • 17.Ju C, Uetrecht JP. Mechanism of idiosyncratic drug reactions: reactive metabolite formation, protein binding and the regulation of the immune system. Curr Drug Metab. 2002;3:367–377. doi: 10.2174/1389200023337333. [DOI] [PubMed] [Google Scholar]
  • 18.Tafazoli S, Spehar DD, O'Brien PJ. Oxidative stress mediated idiosyncratic drug toxicity. Drug Metab Rev. 2005;37:311–325. doi: 10.1081/DMR-200055227. [DOI] [PubMed] [Google Scholar]
  • 19.Ju C, Pohl LR. Tolerogenic role of Kupffer cells in immune-mediated adverse drug reactions. Toxicology. 2005;209:109–112. doi: 10.1016/j.tox.2004.12.017. [DOI] [PubMed] [Google Scholar]
  • 20.National Human Genome Research Institute. An overview of the Human Genome Project. Available at: http://www.genome. gov/12011238. Accessed June 27, 2007.
  • 21.Harrigan GG. Metabolomics: a ‘systems’ contribution to pharmacentical discovery and drug development. Drug Discovery World. 2006; Available at: http://www.ddw-online.com/data/pdfs/metabolomics.pdf. Accessed June 27, 2007.
  • 22.Harrison PM, Kumar A, Lang N, Snyder M, Gerst M. A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Res. 2002;30:1083–1090. doi: 10.1093/nar/30.5.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Dettmer K, Hammock BD. Metabolomics—a new exciting field within “omics” sciences. Environ Health Perspect. 2004;112:A396–A397. doi: 10.1289/ehp.112-1241997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Berg EL, Kunkel EJ, Hytopoulos E. Biological complexity and drug discovery: a practical systems biology approach. Syst Biol. 2005;152:201–206. doi: 10.1049/ip-syb:20050036. [DOI] [PubMed] [Google Scholar]
  • 25.Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43:S45–S53. doi: 10.1002/hep.20969. [DOI] [PubMed] [Google Scholar]
  • 26.Kristensen DM, Kalisz M, Nielsen JH. Cytokine signaling in embryonic stem cells. APMIS. 2005;113:756–772. doi: 10.1111/j.1600-0463.2005.apm_391.x. [DOI] [PubMed] [Google Scholar]
  • 27.Nebert DW. Inter-individual susceptibility to environmental toxicants—a current assessment. Toxicol Appl Pharmacol. 2005;207:34–42. doi: 10.1016/j.taap.2005.01.043. [DOI] [PubMed] [Google Scholar]
  • 28.Kanduc D, Mittelman A, Serpico R, et al. Cell death: apoptosis versus necrosis. Int J Oncol. 2002;21:165–170. [PubMed] [Google Scholar]
  • 29.Garrod AE. Inborn Errors of Metabolism. 1923. Available at: http://www.esp.org/books/garrod/inborn-errors/facsimile/.Accessed June 27, 2007.
  • 30.Epstein CJ. Genetic disorders and birth defects. In: Rudolph AM, Hoffman JIE, Rudolph CD, editors. Rudolph's Pediatrics. New York, NY: McGraw Hill; 1996. pp. 265–374. [Google Scholar]
  • 31.Burton BK. Inborn errors of metabolism in infancy: a guide to diagnosis. Pediatrics. 1998;102:e69–e69. doi: 10.1542/peds.102.6.e69. [DOI] [PubMed] [Google Scholar]
  • 32.Baumgartner C, Baumgartner D. Biomarker discovery, disease classification, and similarity query processing on high-throughput MS/MS data of inborn errors of metabolism. J Biomol Screen. 2006;11:90–99. doi: 10.1177/1087057105280518. [DOI] [PubMed] [Google Scholar]
  • 33.Yu CL, Gu XF. Newborn screening of inherited metabolic diseases by tandem mass spectrometry. J Peking Univ Health Sci. 2006;38:103–106. [PubMed] [Google Scholar]
  • 34.Campbell CD, Ganesh J, Ficicioglu C. Two newborns with nutritional vitamin B12 deficiency: challenges in newborn screening for vitamin B12 deficiency. Haematologica. 2005;90:ECR45–ECR45. [PubMed] [Google Scholar]
  • 35.Want EJ, Cravatt BF, Siuzdak G. The expanding role of mass spectrometry in metabolite profiling and characterization. ChemBioChem. 2005;6:1941–1951. doi: 10.1002/cbic.200500151. [DOI] [PubMed] [Google Scholar]
  • 36.Piraud M, Vianey-Saban C, Bourdin C, et al. A new reversed-phase liquid chromatographic/tandem mass spectrom etric method for analysis of underivatised amino acids: evaluation for the diagnosis and management of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom. 2005;19:3287–3297. doi: 10.1002/rcm.2197. [DOI] [PubMed] [Google Scholar]
  • 37.Dott M, Chance D, Fierro M, et al. Metabolic disorders detectable by tandem mass spectrometry and unexpected early childhood mortality: a population-based study. Am J Med Genet. 2006;140A:837–842. doi: 10.1002/ajmg.a.31180. [DOI] [PubMed] [Google Scholar]
  • 38.Porter FD. Malformation syndromes due to inborn errors of cholesterol synthesis. J Clin Invest. 2002;110:715–724. doi: 10.1172/JCI16386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Setchel KDR, Schwartz M, O'Connell NC, et al. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7α-hydroxylase gene causes severe neonatal disease. J Clin Invest. 1998;102:1690–1703. doi: 10.1172/JCI2962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.New MI, Wilson RC. Steroid disorders in children: congenital adrenal hyperplasia and apparent mineralocorticoid excess. Proc Natl Acad Sci USA. 1999;96:12790–12797. doi: 10.1073/pnas.96.22.12790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Fujieda K, Tajima T. Molecular basis of adrenal insufficiency. Pediatr Res. 2005;57:62R–62R. doi: 10.1203/01.PDR.0000159568.31749.4D. [DOI] [PubMed] [Google Scholar]
  • 42.Krone N, Riepe FG, Grotzinger J, et al. Functional characterization of two novel point mutations in the CYP21 gene causing simple virilizing forms of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2005;90:445–454. doi: 10.1210/jc.2004-0813. [DOI] [PubMed] [Google Scholar]
  • 43.Krone N, Rieppe FG, Gotze D, et al. Congenital adrenal hyperplasia due to 11-hydroxylase deficiency: functional characterization of two novel point mutations and a three-base pair deletion in the CYP11B1 gene. Clin Endocrinol Metab. 2005;90:3724–3730. doi: 10.1210/jc.2005-0089. [DOI] [PubMed] [Google Scholar]
  • 44.Sawada N, Sakaki T, Kato S, Inouye K. Structure-function analysis of CYP27B1 and CYP27A1: studies on mutants from patients with vitamin D-dependent rickets type 1 (VDDR-1) and cerebrotendinous xanthomatosis (CTX) Eur J Biochem. 2001;268:6607–6615. doi: 10.1046/j.0014-2956.2001.02615.x. [DOI] [PubMed] [Google Scholar]
  • 45.Kubitz R, Keitel V, Haussinger D. Inborn errors of biliary canalicular transport systems. Methods Enzymol. 2005;400:558–569. doi: 10.1016/S0076-6879(05)00031-5. [DOI] [PubMed] [Google Scholar]
  • 46.Elferink R, Paulusma CC, Groen AK. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology. 2006;130:908–925. doi: 10.1053/j.gastro.2005.08.052. [DOI] [PubMed] [Google Scholar]
  • 47.Hwang S, Shulman R. Approach to neonatal cholestasis. Semin Liver Dis. 2002;18:281–286. [Google Scholar]
  • 48.Schilsky ML. Inherited metabolic disease. Curr Opin Gastroenterol. 1999;15:200–207. doi: 10.1097/00001574-199905000-00004. [DOI] [PubMed] [Google Scholar]
  • 49.Lankisch TO, Moebius U, Wehmeier M, et al. Gilbert's disease and atazanavir: from phenotype to UDP-glucuronosyltransferase haplotype. Hepatology. 2006;44:1324–1332. doi: 10.1002/hep.21361. [DOI] [PubMed] [Google Scholar]
  • 50.Kempf DJ, Waring JF, Morfitt DC, et al. Practical preclinical model for assessing the potential for unconjugated hyperbilirubinemia produced by human immunodeficiency virus protease inhibitors. Antimicrob Agents Chemother. 2006;50:762–764. doi: 10.1128/AAC.50.2.762-764.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Lake BD, Young EP, Winchester BG. Prenatal diagnosis of lysosomal storage diseases. Brain Pathol. 1998;8:133–149. doi: 10.1111/j.1750-3639.1998.tb00141.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Dorpe J, Moerman P, Pecceu A, et al. Non-immune hydrops fetalis caused by beta-glucuronidase deficiency (mucopolysaccharidosis VII). Study of a family with 3 affected siblings. Genet Couns. 1996;7:105–112. [PubMed] [Google Scholar]
  • 53.Fratantoni JC, Hall CW, Neufeld EF. The defect in Hurler's and Hunter's syndromes: faulty degradation of mucopolysaccharide. Proc Natl Acad Sci USA. 1968;60:699–706. doi: 10.1073/pnas.60.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Minami R, Nakamura F, Kudoh T, Oyanagi K, Nakao T. An altered hexosaminidase A in the liver affected by Hurler and Hunter syndromes. Tohoku J Exp Med. 1980;132:329–335. doi: 10.1620/tjem.132.329. [DOI] [PubMed] [Google Scholar]
  • 55.Lenz W. A short history of thalidomide embryopathy. Teratology. 1988;38:203–215. doi: 10.1002/tera.1420380303. [DOI] [PubMed] [Google Scholar]
  • 56.Stephens TD, Bunde CJW, Fillmore BJ. Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol. 2000;59:1489–1499. doi: 10.1016/S0006-2952(99)00388-3. [DOI] [PubMed] [Google Scholar]
  • 57.Cindy K, Hendrik R, Melissa T, Jutta G. Identification of novel mutations in PEX2, PEX6, PEX10, PEX12, and PEX13 in Zellweger spectrum patients. Hum Mutat. 2006;27:1157–1157. doi: 10.1002/humu.9462. [DOI] [PubMed] [Google Scholar]
  • 58.Stanescu-Segall B. Retinopathy in Zellweger's cerebrohepatorenal syndrome: the electrophysiological aspects. Oftalmologia. 1996;40:357–360. [PubMed] [Google Scholar]
  • 59.Gondré-Lewis MC, Petrache HI, Wassif CA, et al. Abnormal sterols in cholesterol-deficiency diseases cause secretory granule malformation and decreased membrane curvature. J Cell Sci. 2006;119:1876–1885. doi: 10.1242/jcs.02906. [DOI] [PubMed] [Google Scholar]
  • 60.Constans A. What's new in mass spectrometry? Scientist. 2005;19:31–31. [Google Scholar]
  • 61.Terry M. Mass spectrometry: targeting new areas. Genomics Proteomics. 2006;6:10–14. [Google Scholar]
  • 62.Bollard ME, Keun HC, Beckonert O, et al. Comparative metabonomics of differential hydrazine toxicity in the rat and mouse. Toxicol Appl Pharmacol. 2005;204:135–151. doi: 10.1016/j.taap.2004.06.031. [DOI] [PubMed] [Google Scholar]
  • 63.Coen M, Ruepp SU, Lindon JC, et al. Integrated application of transcriptomics and metabonomics yields new insight into the toxicity due to paracetamol in the mouse. J Pharm Biomed Anal. 2004;35:93–105. doi: 10.1016/j.jpba.2003.12.019. [DOI] [PubMed] [Google Scholar]
  • 64.Foxall PJD, Singer JM, Hartley JM, et al. Urinary proton magnetic resonance studies of early ifosfamide-induced nephrotoxicity and encephalopathy. Clin Cancer Res. 1997;3:1507–1518. [PubMed] [Google Scholar]
  • 65.Clayton TA, Lindon JC, Everett JR, et al. Hepatotoxin-induced hypercreatinaemia and hypercreatinuria: their relationship to one another, to liver damage and to weakened nutritional status. Arch Toxicol. 2004;78:86–96. doi: 10.1007/s00204-003-0515-2. [DOI] [PubMed] [Google Scholar]
  • 66.Mortishire-Smith RJ, Skiles GL, Lawrence JW, et al. Use of metabonomics to identify impaired fatty acid metabolism as the mechanism of a drug-induced toxicity. Chem Res Toxicol. 2004;17:165–173. doi: 10.1021/tx034123j. [DOI] [PubMed] [Google Scholar]
  • 67.Keun HC. Metabonomic modeling of drug toxicity. Pharmacol Therapeut. 2006;109:92–106. doi: 10.1016/j.pharmthera.2005.06.008. [DOI] [PubMed] [Google Scholar]
  • 68.Lindon JC, Holmes E, Bollard ME, et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. biomarkers. 2004;9:1–31. doi: 10.1080/13547500410001668379. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES