Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2005 Mar 22;7(1):E14–E19. doi: 10.1208/aapsj070103

Properties of thalidomide and its analogues: Implications for anticancer therapy

Steven K Teo 1,
PMCID: PMC2751493  PMID: 16146335

Abstract

Thalidomide and its immunomodulatory (IMiDs) analogs (lenalidomide, Revlimid, CC-5013; CC-4047, ACTIMID) are a novel class of compounds with numerous effects on the body's immune system, some of which are thought to mediate the anticancer and anti-inflammatory results observed in humans. Thalidomide is currently being used experimentally to treat various cancers and inflammatory diseases. It is approved for the treatment of dermal, reaction from leprosy and is currently in phase III trials for multiple myeloma. Thalidomide and IMiDs inhibit the cytokines tumor necrosis factor-α (TNF-α), interleukins (IL) 1β, 6, 12, and granulocyte macrophagecolony stimulating factor (GM-CSF). They also costimulate primary human T lymphocytes inducing their proliferation, cytokine production, and cytotoxic activity thereby increasing the T cells' anticancer activity. They induce an IL-2-mediated primary T cell proliferation with a concomitant increase in IFN-γ production and decrease the density of TNF-α-induced cell surface adhesion molecules ICAM-1, VCAM-1, and E-selectin on human umbilical vein endothelial cells. Thalidomide stimulates the Th-1 response increasing, IFN-γ levels while CC-4047 increased IL-2 as well. Some of the above immunomodulatory activities along with anti-angiogenic, anti-proliferative, and pro-apoptotic properties are thought to mediate the IMiDs' antitumor responses observed in relapsed and refractory multiple myeloma and some solid tumor cancers. This has led to their use in various oncology clinical trials. The second generation IMiD, lenalidomide, has shown potential in treating the bone marrow disorders myelodysplastic syndrome and multiple myeloma. It is currently in phase II and III trials for these diseases respectively with numer-ous phase II trials in other hematologic and solid tumors.

Keywords: Thalidomide, lenalidomide, IMiDs, immunomodulatory, cytokine, multiple myeloma, anti-cancer

Full Text

The Full Text of this article is available as a PDF (260.9 KB).

Footnotes

This review is based on a presentation at the AAPS workshop on “Exposure Response Relationships of Immunemodulators,” March 27–28, 2003, Washington, DC.

References

  • 1.Teo S, Resztak K, Scheffler M, et al. Thalidomide in the treatment of leprosy. Microbes Infect. 2002;4:1193–1202. doi: 10.1016/S1286-4579(02)01645-3. [DOI] [PubMed] [Google Scholar]
  • 2.Stephens T, Brynner R. Dark Remedy: The Impact of Thalidomide and Its Revival as a Vital Medicine. Cambridge, MA: Perseus Publishing; 2001. [Google Scholar]
  • 3.Mellin G., Katzenstein M. The saga of thalidomide: neuropathy to embryopathy with case reports and congenital abnormalities. N Engl J Med. 1962;267:1184–1193. doi: 10.1056/NEJM196212062672305. [DOI] [PubMed] [Google Scholar]
  • 4.Kelsey F. Thalidomide update: regulatory aspects. Teratology. 1988;38:221–226. doi: 10.1002/tera.1420380305. [DOI] [PubMed] [Google Scholar]
  • 5.Newman L, Johnson E, Staples R. Assessment of the effectiveness of animal developmental toxicity testing for human safety. Reprod Toxicol. 1993;7:359–390. doi: 10.1016/0890-6238(93)90025-3. [DOI] [PubMed] [Google Scholar]
  • 6.Zeldis J, Williams B, Thomas S, Elsayed M. STEPS™: a comprehensive program for controlling and monitoring access to thalidomide. Clin Ther. 1999;21:319–330. doi: 10.1016/S0149-2918(00)88289-2. [DOI] [PubMed] [Google Scholar]
  • 7.Raje N, Anderson K. Thalidomide and immunomodulatory drugs as cancer therapy. Curr Opin Oncol. 2002;14:635–640. doi: 10.1097/00001622-200211000-00008. [DOI] [PubMed] [Google Scholar]
  • 8.Singhal S, Mehta J, Desikan R, et al. Anti-tumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341:1565–1571. doi: 10.1056/NEJM199911183412102. [DOI] [PubMed] [Google Scholar]
  • 9.Drach J, Kaufman H, Woehrer S, Chott A, Zielinski C, Raderer M. Durable remissions after rituximab plus thalidomide for relapsed/refractory mantle cell lymphoma. Proc Am Soc Clin Oncol. 2004;22:6583–6583. [Google Scholar]
  • 10.Stirling D. Thalidomide and its impact on dermatology. Semin Cutan Med Surg. 1998;17:231–242. doi: 10.1016/S1085-5629(98)80019-9. [DOI] [PubMed] [Google Scholar]
  • 11.Vasiliauskas E, Kam L, Abreu-Martin M, Papadakis K, Zeldis J, Targan S. An open-label step-wise dose escalating pilot study to evaluate the safety, tolerance and efficacy of low dose thalidomide in the treatment of chronically-active, steroid-dependent Crohns disease. Gastroenterol. 1999;116:A387–A387. doi: 10.1016/S0016-5085(99)70136-8. [DOI] [PubMed] [Google Scholar]
  • 12.Schey S, Cavenagh J, Johnson R, Child J, Oakervee H, Jones RA. UK myeloma forum phase III study of thalidomide: long-term follow-up and recommendations for treatment. Leuk Res. 2003;27:909–914. doi: 10.1016/S0145-2126(03)00027-4. [DOI] [PubMed] [Google Scholar]
  • 13.Fine H, Wen P, Maher E, et al. Phase II trial of thalidomide and carmustine for patients with recurrent high-grade glioma. J Clin Oncol. 2003;21:2299–2304. doi: 10.1200/JCO.2003.08.045. [DOI] [PubMed] [Google Scholar]
  • 14.Hwu W, Krown S, Menell J, et al. Phase II study of temozolomide plus thalidomide for the treatment of metastatic melanoma. J Clin Oncol. 2003;21:3351–3356. doi: 10.1200/JCO.2003.02.061. [DOI] [PubMed] [Google Scholar]
  • 15.Maples W, Stevenson J, Sumrall S, Naughton M, Schwartz J. Advanced pancreatic cancer: a multi-institutional trial with gemcitabine and thalidomide. J Clin Oncol. 2004;22:4082–4082. [Google Scholar]
  • 16.Ghobrial IM, Rajkumar SV. Management of thalidomide toxicity. J Support Oncol. 2003;1:194–205. [PMC free article] [PubMed] [Google Scholar]
  • 17.Corral L, Kaplan G. Immunomodulation by thalidomide and thalidomide analogues. Ann Rheum Dis. 1999;58(Suppl. 1):1107–1113. doi: 10.1136/ard.58.2008.i107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Sampaio E, Sarno E, Gallily R, Cohn Z, Kaplan G. Thalidomide selectively inhibits tumor necrosis factor a production by stimulated human monocytes. J Exp Med. 1991;173:699–703. doi: 10.1084/jem.173.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Muller GW, Chen R, Huang SY, et al. Amino-substituted thalidomide analogs: potent inhibitors of TNF-alpha production. Bioorg Med Chem Lett. 1999;9:1625–1630. doi: 10.1016/S0960-894X(99)00250-4. [DOI] [PubMed] [Google Scholar]
  • 20.Munshi N. Recent advances in the management of multiple myeloma. Semin Hematol. 2004;41:21–26. doi: 10.1053/j.seminhematol.2004.03.002. [DOI] [PubMed] [Google Scholar]
  • 21.Richardson P, Schlossman R, Anderson K. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002;100:3063–3067. doi: 10.1182/blood-2002-03-0996. [DOI] [PubMed] [Google Scholar]
  • 22.Mufti G, List A, Gore S, Ho A. Myelodysplastic syndrome.Hematology (Am Soc Hematol Educ Program). 2003;:176–199. [DOI] [PubMed]
  • 23.List A, Kurtin S, Glinsmann-Gibson B, et al. Efficacy and safety of CC-5013 for treatment of anemia in patients with myelodysplastic syndrome (MDS).Blood. 2003; 102: Abstract 641.
  • 24.Sison B, Bond T, Amato R, Crawford D, Crighton F. Phase II of CC-4047 in patients with metastatic hormone-refractory prostate cancer. J Clin Oncol. 2004;22:4701–4701. [Google Scholar]
  • 25.Corral L, Muller G, Moreira A, et al. Selection of novel analogs of thalidomide with enhanced tumor necrosis factor alpha inhibitory activity. Mol Med. 1996;2:506–515. [PMC free article] [PubMed] [Google Scholar]
  • 26.Moreira A, Sampaio E, Zmuidzinas A, Frindt P, Smith K, Kaplan G. Thalidomide exerts its inhibitory action on TNF-alpha by enhancing mRNA degradation. J Exp Med. 1993;177:1675–1680. doi: 10.1084/jem.177.6.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Corral L, Haslett P, Muller G, et al. Differential cytokine modulation and T cell activation by 2 distinct classes of thalidomide analogues that are potent inhibitors of TNF-α. J Immunol. 1999;163:380–386. [PubMed] [Google Scholar]
  • 28.Haslett P, Corral L, Albert A, Kaplan G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med. 1998;187:1885–1982. doi: 10.1084/jem.187.11.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Bartlett J, Dredge K, Dalgleish A. The evolution of thalidomide and its IMiD® derivatives as anti-cancer agents. Nat Rev Cancer. 2004;4:314–322. doi: 10.1038/nrc1323. [DOI] [PubMed] [Google Scholar]
  • 30.Geitz H, Handt S, Zwingenberger K. Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology. 1996;31:213–221. doi: 10.1016/0162-3109(95)00050-X. [DOI] [PubMed] [Google Scholar]
  • 31.Verbon A., Juffermans N, Speelman P, et al. A single oral dose of thalidomide enhances the capacity of lymphocytes to secrete gamma interferon in healthy humans. Antimicrob Agents Chemother. 2000;44:2286–2290. doi: 10.1128/AAC.44.9.2286-2290.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Dredge K, Marriott J, Todryk S, et al. Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J Immunol. 2002;168:3914–3919. doi: 10.4049/jimmunol.168.10.4914. [DOI] [PubMed] [Google Scholar]
  • 33.Oliver S. The Th1/Th2 paradigm in the pathogenesis of scleroderma and its modulation by thalidomide. Curr Rheumatol Rep. 2000;2:486–491. doi: 10.1007/s11926-000-0025-7. [DOI] [PubMed] [Google Scholar]
  • 34.Schafer PH, Gandhi AK, Loveland MA, et al. Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs. J Pharmacol Exp Ther. 2003;305:1222–1232. doi: 10.1124/jpet.102.048496. [DOI] [PubMed] [Google Scholar]
  • 35.Davies F, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98:210–216. doi: 10.1182/blood.V98.1.210. [DOI] [PubMed] [Google Scholar]
  • 36.D'Amato R, Loughnan M, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91:4082–4085. doi: 10.1073/pnas.91.9.4082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Dredge K, Marriott J, Macdonald C, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 2002;87:1166–1172. doi: 10.1038/sj.bjc.6600607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Gupta D, Treon S, Shima Y, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001;15:1950–1961. doi: 10.1038/sj.leu.2402295. [DOI] [PubMed] [Google Scholar]
  • 39.Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analog overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood. 2000;96:2943–2950. [PubMed] [Google Scholar]
  • 40.Mitsiades N, Mitsiades C, Poulaki V, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002;99:4525–4530. doi: 10.1182/blood.V99.12.4525. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES