Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2005 Apr 8;7(1):E61–E77. doi: 10.1208/aapsj070109

DNA-based therapeutics and DNA delivery systems: A comprehensive review

Siddhesh D Patil 1, David G Rhodes 1, Diane J Burgess 1,
PMCID: PMC2751499  PMID: 16146351

Abstract

The past several years have witnessed the evolution of gene medicine from an experimental technology into a viable strategy for developing therapeutics for a wide range of human disorders. Numerous prototype DNA-based biopharmaceuticals can now control disease progression by induction and/or inhibition of genes. These potent therapeutics include plasmids containing transgenes, oligonucleotides, aptamers, ribozymes, DNAzymes, and small interfering RNAs. Although only 2 DNA-based pharmaceuticals (an antisense oligonucleotide formulation, Vitravene, (USA, 1998), and an adenoviral gene therapy treatment, Gendicine (China, 2003), have received approval from regulatory agencies; numerous candidates are in advanced stages of human clinical trials. Selection of drugs on the basis of DNA sequence and structure has a reduced potential for toxicity, should result in fewer side effects, and therefore should eventually yield safer drugs than those currently available. These predictions are based on the high selectivity and specificity of such molecules for recognition of their molecular targets. However, poor cellular uptake and rapid in vivo degradation of DNA-based therapeutics necessitate the use of delivery systems to facilitate cellular internalization and preserve their activity. This review discusses the basis of structural design, mode of action, and applications of DNA-based therapeutics. The mechanisms of cellular uptake and intracellular trafficking of DNA-based therapeutics are examined, and the constraints these transport processes impose on the choice of delivery systems are summarized. Finally, the development of some of the most promising currently available DNA delivery platforms is discussed, and the merits and drawbacks of each approach are evaluated.

Keywords: nucleic acid therapeutics, DNA delivery systems, nonviral vectors, viral vectors, liposomes, gene therapy

Full Text

The Full Text of this article is available as a PDF (177.3 KB).

References

  • 1.Crooke ST. An overview of progress in antisense therapeutics. Antisense Nucleic Acid Drug Dev. 1998;8:115–122. doi: 10.1089/oli.1.1998.8.115. [DOI] [PubMed] [Google Scholar]
  • 2.Stull RA, Szoka FC. Antigene, ribozyme and aptamer nucleic acid drugs: progress and prospects. Pharm Res. 1995;12:465–483. doi: 10.1023/A:1016281324761. [DOI] [PubMed] [Google Scholar]
  • 3.Patil SD, Burgess DJ. DNA-based Biopharmaceuticals: therapeutics for the 21st Century. AAPS Newsmagazine. 2003;6(12):27–27. [Google Scholar]
  • 4.Baker BF. The role of antisense oligonucleotides in the wave of genomic information. Nucleosides Nucleotides Acids. 2001;20(4–7):397–399. doi: 10.1081/NCN-100002313. [DOI] [PubMed] [Google Scholar]
  • 5.Ommen GJB, Bakker E, Dunnen JT. The human genome project and the future of diagnostics, treatment, and prevention. Lancet. 1999;354(suppl 1):5–10. doi: 10.1016/S0140-6736(99)90241-6. [DOI] [PubMed] [Google Scholar]
  • 6.Uherek C, Wels W. DNA-carrier proteins for targeted gene delivery. Adv Drug Deliv Rev. 2000;44(2–3):153–166. doi: 10.1016/S0169-409X(00)00092-2. [DOI] [PubMed] [Google Scholar]
  • 7.Johnston SA, Talaat AM, McGuire MJ. Genetic Immunization What's in a Name? Arch Med Res. 2002;33:325–329. doi: 10.1016/S0188-4409(02)00383-1. [DOI] [PubMed] [Google Scholar]
  • 8.Denny WA. Prodrugs for gene-directed enzyme-prodrug therapy (suicide gene therapy) J Biomed Biotechnol. 2003;1:48–70. doi: 10.1155/S1110724303209098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Denny WA, Wilson WR. The design of selectively-activated anti-cancer prodrugs for use in antibody-directed and gene-directed enzyme-prodrug therapies. J Pharm Pharmacol. 1998;50:387–394. doi: 10.1111/j.2042-7158.1998.tb06878.x. [DOI] [PubMed] [Google Scholar]
  • 10.Connors TA. The choice of prodrugs for gene directed enzyme produrg therapy of cancer. Gene Ther. 1995;2:702–709. [PubMed] [Google Scholar]
  • 11.Bentires-Alj M, Hellin A-C, Lechanteur C, et al. Cytosine deaminase suicide gene therapy for peritoneal carcinomatosis. Cancer Gene Ther. 2000;7:20–26. doi: 10.1038/sj.cgt.7700093. [DOI] [PubMed] [Google Scholar]
  • 12.Anderson WF. Prospects for human gene therapy. Science. 1984;226:401–409. doi: 10.1126/science.6093246. [DOI] [PubMed] [Google Scholar]
  • 13.Fitzsimons HL, Bland RJ, During MJ. Promoters and regulatory elements that improve adeno-associated virus transgene expression in the brain. Methods. 2002;28(2):227–236. doi: 10.1016/S1046-2023(02)00227-X. [DOI] [PubMed] [Google Scholar]
  • 14.Walther W, Stein U. Cell type specific and inducible promoters for vectors in gene therapy as an approach for cell targeting. Journal of Molecular Medicine (Berlin) 1996;74:379–392. doi: 10.1007/BF00210632. [DOI] [PubMed] [Google Scholar]
  • 15.Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS. Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther. 1997;8:2019–2029. doi: 10.1089/hum.1997.8.17-2019. [DOI] [PubMed] [Google Scholar]
  • 16.Paillard F. Promoter attenuation in gene therapy: causes and remedies. Hum Gene Ther. 1997;8:2009–2010. [PubMed] [Google Scholar]
  • 17.Weeratna RD, Wu T, Etler SM, Zhang L, Davis HL. Designing gene therapy vectors: avoiding immune responses by using tissue-specific promoters. Gene Ther. 2001;8:1872–1878. doi: 10.1038/sj.gt.3301602. [DOI] [PubMed] [Google Scholar]
  • 18.Greco O, Marples B, Dachs GU, Williams KJ, Patterson AV, Scott SD. Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Ther. 2002;9:1403–1411. doi: 10.1038/sj.gt.3301823. [DOI] [PubMed] [Google Scholar]
  • 19.Anderson WF. Human gene therapy. Nature (London) 1998;392(suppl 6679):25–30. doi: 10.1038/32058. [DOI] [PubMed] [Google Scholar]
  • 20.Vorburger SA, Hunt KK. Adenovirall gene therapy. Oncologist. 2002;7:46–59. doi: 10.1634/theoncologist.7-1-46. [DOI] [PubMed] [Google Scholar]
  • 22.China OKs Gene Therapy Drug.Genetic Engineering News. 2003: 6.
  • 23.Galanis E, Russell S. Cancer gene therapy clinical trials: lessons for the future. Br J Cancer. 2001;85:1432–1436. doi: 10.1054/bjoc.2001.2129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Mulherkar R. Gene therapy for cancer. Curr Sci. 2001;81:555–560. [Google Scholar]
  • 25.Baekelandt V, Strooper B, Nuttin B, Debyser Z. Gene therapeutic strategies for neurodegenerative diseases. Curr Opin Mol Ther. 2000;2:540–554. [PubMed] [Google Scholar]
  • 26.Bunnell BA, Morgan RA. Gene therapy for HIV infection. Drugs Today. 1996;32:209–224. [Google Scholar]
  • 27.Horner AA, Uden JH, Zubeldia JM, Broide D, Raz E. DNA-based immunotherapeutics for the treatment of allergic disease. Immunol Rev. 2001;179:102–118. doi: 10.1034/j.1600-065X.2001.790111.x. [DOI] [PubMed] [Google Scholar]
  • 28.Crooke ST. Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta. 1999;1489:31–43. doi: 10.1016/s0167-4781(99)00148-7. [DOI] [PubMed] [Google Scholar]
  • 29.Crooke ST. Molecular mechanisms of antisense drugs: human RNase H. Antisense Nucleic Acid Drug Dev. 1999;9:377–379. doi: 10.1089/oli.1.1998.8.133. [DOI] [PubMed] [Google Scholar]
  • 30.Engels JW, Uhlmann E. Chemistry of Oligonucleotides. In: Malvy C, editor. Pharmaceutical Aspects of Oligonucleotides. London, UK: Taylor & Francis Ltd; 2000. pp. 35–78. [Google Scholar]
  • 31.Khatsenko O, Morgan R, Truong L, et al. Absorption of antisense oligonucleotides in rat intestine: effect of chemistry and length. Antisense Nucleic Acid Drug Dev. 2000;10:35–44. doi: 10.1089/oli.1.2000.10.35. [DOI] [PubMed] [Google Scholar]
  • 32.Stein CA, Subasinghe C, Shinozuka K, Cohen JS. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 1988;16:3209–3221. doi: 10.1093/nar/16.8.3209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Matteucci M. Structural modifications toward improved antisense oligonucleotides. Perspectives in Drug Discovery and Design. 1996;4:1–16. doi: 10.1007/BF02172105. [DOI] [Google Scholar]
  • 34.Shoji Y, Akhtar S, Periasamy A, Herman B, Juliano RL. Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucleic Acids Res. 1991;19:5543–5550. doi: 10.1093/nar/19.20.5543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Akhtar S. Antisense technology: selection and delivery of optimally acting antisense oligonucleotides. J Drug Target. 1998;5:225–234. doi: 10.3109/10611869808995877. [DOI] [PubMed] [Google Scholar]
  • 36.Smith L, Andersen KB, Hovgaard L, Jaroszewski JW. Rational selection of antisense oligonucleotide sequences. Eur J Pharm Sci. 2000;11:191–198. doi: 10.1016/S0928-0987(00)00100-7. [DOI] [PubMed] [Google Scholar]
  • 37.Patil SD, Rhodes DG. Influence of divalent cations on the conformation of phosphorothioate oligodeoxynucleotides: a circular dichroism study. Nucleic Acids Res. 2000;28:2439–2445. doi: 10.1093/nar/28.12.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Agrawal S, Tan W, Cai Q, Xie X, Zhang R. In vivo pharmacokinetics of phosphorothioate oligonucleotides containing contiguous guanosines. Antisense Nucleic Acid Drug Dev. 1997;7:245–249. doi: 10.1089/oli.1.1997.7.245. [DOI] [PubMed] [Google Scholar]
  • 39.Akhtar S, Hughes MD, Khan A, et al. The delivery of antisense therapeutics. Adv Drug Deliv Rev. 2000;44:3–21. doi: 10.1016/S0169-409X(00)00080-6. [DOI] [PubMed] [Google Scholar]
  • 40.Crooke ST. Vitravene another piece in the mosaic. Antisense Nucleic Acid Drug Dev. 1998;8:vii–v3. doi: 10.1089/oli.1.1998.8.vii. [DOI] [PubMed] [Google Scholar]
  • 41.Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev. 2002;54:715–758. doi: 10.1016/S0169-409X(02)00046-7. [DOI] [PubMed] [Google Scholar]
  • 42.Aigner A, Juhl H, Malerczyk C, Tkybusch A, Benz CC, Czubayko F. Expression of a truncated 100 kDa HER2 splice variant acts as an endogenous inhibitor of tumor cell proliferation. Oncogene. 2001;20:2101–2111. doi: 10.1038/sj.onc.1204305. [DOI] [PubMed] [Google Scholar]
  • 43.Zhang L, Gasper WJ, Stass SA, Ioffe OB, Davis MA, Mixson AJ. Angiogenic inhibition mediated by a DNA zyme that targets vascular endothelial growth factor receptor 2. Cancer Res. 2002;62:5463–5469. [PubMed] [Google Scholar]
  • 44.Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45(9):1628–1650. [PubMed] [Google Scholar]
  • 45.Soultrait VR, Lozach P-Y, Altmeyer R, Tarrago-Litvak L, Litvak S, Andreola ML. DNA aptamers derived from HIV-I RNase H inhibitors are strong anti-integrase agents. J Mol Biol. 2002;324:195–203. doi: 10.1016/S0022-2836(02)01064-1. [DOI] [PubMed] [Google Scholar]
  • 46.Chaloin L, Lehmann MJ, Sczakiel G, Restle T. Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res. 2002;30:4001–4008. doi: 10.1093/nar/gkf522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Bertrand J-R, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun. 2002;296:1000–1004. doi: 10.1016/S0006-291X(02)02013-2. [DOI] [PubMed] [Google Scholar]
  • 48.McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. 2002;3:737–747. doi: 10.1038/nrg908. [DOI] [PubMed] [Google Scholar]
  • 49.Scherr M, Morgan MA, Eder M. Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem. 2003;10:245–256. doi: 10.2174/0929867033368493. [DOI] [PubMed] [Google Scholar]
  • 50.Kurreck J. Antisense technologies: improvement through movel chemical modifications. Eur J Biochem. 2003;270:1628–1644. doi: 10.1046/j.1432-1033.2003.03555.x. [DOI] [PubMed] [Google Scholar]
  • 51.Martinez MA, Gutierrez A, Armand-Ugon M, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS. 2002;16(18):2385–2390. doi: 10.1097/00002030-200212060-00002. [DOI] [PubMed] [Google Scholar]
  • 52.Zamore PD, Aronin N. siRNAs knock down hepatitis. Nat Med. 2003;9(3):266–267. doi: 10.1038/nm0303-266. [DOI] [PubMed] [Google Scholar]
  • 53.Ge Q, McManus MT, Nguyen T, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci USA. 2003;100:2718–2723. doi: 10.1073/pnas.0437841100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Bennett RM. As nature intended? The uptake of DNA and oligonucleotides by eukaryotic cells. Antisense Res Dev. 1993;3:235–241. doi: 10.1089/ard.1993.3.235. [DOI] [PubMed] [Google Scholar]
  • 56.Doan T. Cell binding and internalisation of oligonucleotides. S.T.P. Pharma Sciences. 2001;11:75–82. [Google Scholar]
  • 57.Crooke ST. Delivery of oligonucleotides and polynucleotides. J Drug Target. 1995;3:185–190. doi: 10.3109/10611869509015944. [DOI] [PubMed] [Google Scholar]
  • 58.Hughes MD, Hussain M, Nawaz Q, Sayyed P, Akhtar S. The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov Today. 2001;6:303–315. doi: 10.1016/S1359-6446(00)00326-3. [DOI] [PubMed] [Google Scholar]
  • 59.Liu F, Huang L. Development of non-viral vectors for systemic gene delivery. J Control Release. 2002;78(1–3):259–266. doi: 10.1016/S0168-3659(01)00494-1. [DOI] [PubMed] [Google Scholar]
  • 60.Akhtar S, Juliano RL. Cellular uptake and intracellular fate of antisense oligonucleotides. Trends Cell Biol. 1992;2:139–144. doi: 10.1016/0962-8924(92)90100-2. [DOI] [PubMed] [Google Scholar]
  • 61.Wu-Pong S. Alternative interpretations of the oligonucleotide transport literature: insights from nature. Adv Drug Deliv Rev. 2000;44:59–70. doi: 10.1016/S0169-409X(00)00084-3. [DOI] [PubMed] [Google Scholar]
  • 62.Holmes AR, Dohrman AF, Ellison AR, Gonez KK, Gruenert DC. Intracellular compartmentalization of DNA fragments in cultured airway epithelial cells mediated by cationic lipids. Pharm Res. 1999;16:1020–1025. doi: 10.1023/A:1018927531003. [DOI] [PubMed] [Google Scholar]
  • 63.Kamiya H, Tsuchiya H, Yamazaki J, Harashima H. Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv Drug Deliv Rev. 2001;52:153–164. doi: 10.1016/S0169-409X(01)00216-2. [DOI] [PubMed] [Google Scholar]
  • 64.Tachibana R, Harashima H, Shinohara Y, Kiwada H. Quantitative studies on the nuclear transport of plasmid DNA and gene expression employing nonviral vectors. Adv Drug Deliv Rev. 2001;52:219–226. doi: 10.1016/S0169-409X(01)00211-3. [DOI] [PubMed] [Google Scholar]
  • 65.Brown MD, Schatzlein AG, Uchegbu IF. Gene delivery with synthetic (non viral) carriers. Int J Pharm. 2001;229(1–2):1–21. doi: 10.1016/S0378-5173(01)00861-4. [DOI] [PubMed] [Google Scholar]
  • 66.Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol. 2000;18:33–37. doi: 10.1038/71889. [DOI] [PubMed] [Google Scholar]
  • 67.Agrawal S, Zhang R. Pharmacokinetics of oligonucleotides. Ciba Foundation Symposium. 1997;209:60–78. doi: 10.1002/9780470515396.ch6. [DOI] [PubMed] [Google Scholar]
  • 68.Yu RZ, Geary RS, Leeds JM, et al. Pharmacokinetics and tissue disposition in monkeys of an antisense oligonucleotide inhibitor of ha-ras encapsulated in stealth liposomes. Pharm Res. 1999;16:1309–1315. doi: 10.1023/A:1014822219133. [DOI] [PubMed] [Google Scholar]
  • 69.Tam P, Monck M, Lee D, et al. Stabilized plasmid-lipid particles for systemic gene therapy. Gene Ther. 2000;7:1867–1874. doi: 10.1038/sj.gt.3301308. [DOI] [PubMed] [Google Scholar]
  • 70.Kunisawa J, Nakagawa S, Mayumi T. Pharmacotherapy by intracellular delivery of drugs using fusogenic liposomes: application to vaccine development. Adv Drug Deliv Rev. 2001;52:177–186. doi: 10.1016/S0169-409X(01)00214-9. [DOI] [PubMed] [Google Scholar]
  • 71.Hope MJ, Mui B, Ansell S, Ahkong QF. Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs. Mol Membr Biol. 1998;15:1–14. doi: 10.3109/09687689809027512. [DOI] [PubMed] [Google Scholar]
  • 72.Jaaskelainen I, Moenkkoenen J, Urtti A. Oligonucleotide-cationic liposome interactions. A physicochemical study. Biochim Biophys Acta. 1994;1195:115–123. doi: 10.1016/0005-2736(94)90017-5. [DOI] [PubMed] [Google Scholar]
  • 73.Jaaskelainen I, Sternberg B, Monkkonen J, Urtti A. Physicochemical and morphological properties of complexes made of cationic liposomes and oligonucleotides. Int J Pharm. 1998;167(1–2):191–203. doi: 10.1016/S0378-5173(98)00067-2. [DOI] [Google Scholar]
  • 74.Monnard P-A, Oberholzer T, Luisi P. Entrapment of nucleic acids in liposomes. Biochim Biophys Acta. 1997;1329:39–50. doi: 10.1016/S0005-2736(97)00066-7. [DOI] [PubMed] [Google Scholar]
  • 75.McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng. 2000;2:289–313. doi: 10.1146/annurev.bioeng.2.1.289. [DOI] [PubMed] [Google Scholar]
  • 76.Regnier V, Tahiri A, Andre N, Lemaitre M, Le T, Preat V. Electroporation-mediated delivery of 3′-protected phosphodiester oligodeoxynucleotides to the skin. J Control Release. 2000;67(2–3):337–346. doi: 10.1016/S0168-3659(00)00223-6. [DOI] [PubMed] [Google Scholar]
  • 77.Huang L, Viroonchatapan E. Introduction. In: Huang L, Hung M-C, Wagner E, editors. Nonviral Vectors for Gene Therapy. San Diego, CA: Academic Press; 1999. pp. 3–22. [Google Scholar]
  • 78.Mah C, Byrne BJ, Flotte TR. Virus-based gene delivery systems. Clin Pharmacokinet. 2002;41:901–911. doi: 10.2165/00003088-200241120-00001. [DOI] [PubMed] [Google Scholar]
  • 79.Lotze MT, Kost TA. Viruses as gene delivery vectors: application to gene function, target validation, and assay development. Cancer Gene Ther. 2002;9:692–699. doi: 10.1038/sj.cgt.7700493. [DOI] [PubMed] [Google Scholar]
  • 80.McTaggart S, Al-Rubeai M. Retroviral vectors for human gene delivery. Biotechnol Adv. 2002;20:1–31. doi: 10.1016/S0734-9750(01)00087-8. [DOI] [PubMed] [Google Scholar]
  • 81.Galimi F, Verma IM. Opportunities for the use of lentiviral vectors in human gene therapy. Curr Top Microbiol Immunol. 2002;261:245–254. doi: 10.1007/978-3-642-56114-6_13. [DOI] [PubMed] [Google Scholar]
  • 82.Martin KR, Klein RL, Quigley HA. Gene delivery to the eye using adeno-associated viral vectors. Methods. 2002;28(2):267–275. doi: 10.1016/S1046-2023(02)00232-3. [DOI] [PubMed] [Google Scholar]
  • 83.Lien Y-HH, Lai L-W. Gene therapy for renal disorders: what are the benefits for the elderly? Drugs Aging. 2002;19:553–560. doi: 10.2165/00002512-200219080-00001. [DOI] [PubMed] [Google Scholar]
  • 84.Chamberlain JS. Gene therapy of muscular dystrophy. Hum Mol Genet. 2002;11:2355–2362. doi: 10.1093/hmg/11.20.2355. [DOI] [PubMed] [Google Scholar]
  • 85.Wolf JK, Jenkins AD. Gene therapy for ovarian cancer (review) Int J Oncol. 2002;21:461–468. [PubMed] [Google Scholar]
  • 86.Walther W, Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs. 2000;60:249–271. doi: 10.2165/00003495-200060020-00002. [DOI] [PubMed] [Google Scholar]
  • 87.Lever AML. Gene therapy in the fight against AIDS. Expert Opinion on Therapeutic Patents. 1996;6:161–167. doi: 10.1517/13543776.6.2.161. [DOI] [Google Scholar]
  • 88.Zhao W, Kobayashi M, Hosokawa M, Seth P. Adenoviral vectors for cancer gene therapy. Curr Genomics. 2002;3:163–180. doi: 10.2174/1389202023350516. [DOI] [Google Scholar]
  • 89.Hale SJ, Green NK. Viral approaches to cancer gene therapy. Expert Opinion on Therapeutic Patents. 2002;12:369–378. doi: 10.1517/13543776.12.3.369. [DOI] [Google Scholar]
  • 90.Garton KJ, Ferri N, Raines EW. Efficient expression of exogenous genes in primary vascular cells using IRES-based retroviral vectors. Biotechniques. 2002;32(4):830–830. doi: 10.2144/02324rr01. [DOI] [PubMed] [Google Scholar]
  • 91.Heider H, Verca SB, Rusconi S, Asmis R. Comparison of lipid-mediated and adenoviral gene transfer in human monocyte-derived macrophages and COS-7 cells. Biotechniques. 2000;28(2):260–265. doi: 10.2144/00282st02. [DOI] [PubMed] [Google Scholar]
  • 92.Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 2001;7:33–40. doi: 10.1038/83324. [DOI] [PubMed] [Google Scholar]
  • 93.Favre D, Provost N, Blouin V, et al. Immediate and long-term safety of recombinant adeno-associated virus injection into the nonhuman primate muscle. Mol Ther. 2001;4:559–566. doi: 10.1006/mthe.2001.0494. [DOI] [PubMed] [Google Scholar]
  • 94.Timme TL, Hall SJ, Barrios R, Woo SLC, Aguilar-Cordova E, Thompson TC. Local inflammatory response and vector spread after direct intraprostatic injection of a recombinant adenovirus containing the herpes simplex virus thymidine kinase gene and ganciclovir therapy in mice. Cancer Gene Ther. 1998;5:74–82. [PubMed] [Google Scholar]
  • 95.Arruda VR, Fields PA, Milner R, et al. Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males. Mol Ther. 2001;4:586–592. doi: 10.1006/mthe.2001.0491. [DOI] [PubMed] [Google Scholar]
  • 96.Tenenbaum L, Lehtonen E, Monahan PE. Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr Gene Ther. 2003;3:545–565. doi: 10.2174/1566523034578131. [DOI] [PubMed] [Google Scholar]
  • 97.Flotte TR, Laube BL. Gene therapy in cystic fibrosis. Chest. 2001;120(suppl 3):124S–131S. doi: 10.1378/chest.120.3_suppl.124S. [DOI] [PubMed] [Google Scholar]
  • 98.Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–158. doi: 10.1016/j.ymgme.2003.08.016. [DOI] [PubMed] [Google Scholar]
  • 99.Owens RA. Second generation adeno-associated virus type 2-based gene therapy systems with the potential for preferential integration into AAVSI. Curr Gene Ther. 2002;2:145–159. doi: 10.2174/1566523024605627. [DOI] [PubMed] [Google Scholar]
  • 100.Nyberg-Hoffman C, Aguilar-Cordova E. Instability of adenoviral vectors during transport and its implication for clinical studies. Nat Med. 1999;5:955–957. doi: 10.1038/11400. [DOI] [PubMed] [Google Scholar]
  • 101.Cao B, Mytinger JR, Huard J. Adenovirus mediated gene transfer to skeletal muscle. Microsc Res Tech. 2002;58:45–51. doi: 10.1002/jemt.10116. [DOI] [PubMed] [Google Scholar]
  • 102.Bachrach E, Pelegrin M, Piechaczyk M, Pedersen FS, Duch M. Efficient Gene Transfer into Spleen Cells of Newborn Mice by a Replication-Competent Retroviral Vector. Virology. 2002;293:328–334. doi: 10.1006/viro.2001.1284. [DOI] [PubMed] [Google Scholar]
  • 103.Fattal E, Delattre J, Dubernet C, Couvreur P. Liposomes for the delivery of nucleotides and oligonucleotides. S.T.P. Pharma Sciences. 1999;9:383–390. [Google Scholar]
  • 104.Fattal E, Dubernet C, Couvreur P. Liposome-based formulations for the delivery of oligonucleotides. S.T.P. Pharma Sciences. 2001;11:31–44. [Google Scholar]
  • 105.Pedroso de Lima MC, Simoes S, Pires P, Faneca H, Duzgunes N. Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev. 2001;47(2–3):277–294. doi: 10.1016/S0169-409X(01)00110-7. [DOI] [PubMed] [Google Scholar]
  • 106.Hwang SJ, Davis ME. Cationic polymers for gene delivery: designs for overcoming barriers to systemic administration. Curr Opin Mol Ther. 2001;3:183–191. [PubMed] [Google Scholar]
  • 107.Lemkine GF, Demeneix BA. Polyethylenimines for in vivo gene delivery. Curr Opin Mol Ther. 2001;3:178–182. [PubMed] [Google Scholar]
  • 108.Lollo CP, Banaszezyk MG, Mullen PM, et al. Poly-L-lysine-based gene delivery systems: synthesis, purification, and application. Methods Mol Med. 2002;69:1–13. doi: 10.1385/1-59259-141-8:001. [DOI] [PubMed] [Google Scholar]
  • 109.Borchard G. Chitosans for gene delivery. Adv Drug Deliv Rev. 2001;52:145–150. doi: 10.1016/S0169-409X(01)00198-3. [DOI] [PubMed] [Google Scholar]
  • 110.LeHoux JG, Grondin F. Some effects of chitosan on liver function in the rat. Endocrinology. 1993;132:1078–1084. doi: 10.1210/en.132.3.1078. [DOI] [PubMed] [Google Scholar]
  • 111.Florea BI, Meaney C, Junginger HE, Borchard G. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and non-differentiated COS-1 cell cultures. AAPS Pharm Sci. 2002;4(3):E12–E12. doi: 10.1208/ps040312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Koping-Hoggard M, Tubulekas I, Guan H, et al. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 2001;8:1108–1121. doi: 10.1038/sj.gt.3301492. [DOI] [PubMed] [Google Scholar]
  • 113.Godbey WT, Mikos AG. Recent progress in gene delivery using non-viral transfer complexes. J Control Release. 2001;72(1–3):115–125. doi: 10.1016/S0168-3659(01)00267-X. [DOI] [PubMed] [Google Scholar]
  • 114.Petersen H, Fechner PM, Fischer D, Kissel T. Synthesis, characterization, and biocompatibility of polyethylenimine-graft-poly(ethylene glycol) block copolymers. Macromolecules. 2002;35:6867–6874. doi: 10.1021/ma012060a. [DOI] [Google Scholar]
  • 115.Leclercq F, Dubertret C, Pitard B, Scherman D, Herscovici J. Synthesis of glycosylated polyethylenimine with reduced toxicity and high transfecting efficiency. Bioorg Med Chem Lett. 2000;10:1233–1235. doi: 10.1016/S0960-894X(00)00195-5. [DOI] [PubMed] [Google Scholar]
  • 116.Akinc A, Langer R. Measuring the pH environment of DNA delivered using nonviral vectors: implications for lysosomal trafficking. Biotechnol Bioeng. 2002;78:503–508. doi: 10.1002/bit.20215. [DOI] [PubMed] [Google Scholar]
  • 117.Mumper RJ, Klakamp SL. Polymeric gene delivery systems for in vivo gene therapy. Drug Targeting and Delivery. 1999;10:143–173. [Google Scholar]
  • 118.Ward CM, Pechar M, Oupicky D, Ulbrich K, Seymour LW. Modification of pLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo. J Gene Med. 2002;4:536–547. doi: 10.1002/jgm.296. [DOI] [PubMed] [Google Scholar]
  • 119.Jeong JH, Park TG. Poly(l-lysine)-g-poly(d,l-lactic-co-glycolic acid) micelles for low cytotoxic biodegradable gene delivery carriers. J Control Release. 2002;82:159–166. doi: 10.1016/S0168-3659(02)00131-1. [DOI] [PubMed] [Google Scholar]
  • 120.Wolfert MA, Seymour LW. Chloroquine and amphipathic peptide helixes show synergistic transfection in vitro. Gene Ther. 1998;5:409–414. doi: 10.1038/sj.gt.3300606. [DOI] [PubMed] [Google Scholar]
  • 121.Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects-an update. J Pharm Pharmacol. 2001;53:1047–1067. doi: 10.1211/0022357011776441. [DOI] [PubMed] [Google Scholar]
  • 122.Kawamata Y, Nagayama Y, Nakao K, et al. Receptor-independent augmentation of adenovirus-mediated gene transfer with chitosan in vitro. Biomaterials. 2002;23:4573–4579. doi: 10.1016/S0142-9612(02)00203-X. [DOI] [PubMed] [Google Scholar]
  • 123.Cui Z, Mumper RJ. Chitosan-based nanoparticles for topical genetic immunization. J Control Release. 2001;75:409–419. doi: 10.1016/S0168-3659(01)00407-2. [DOI] [PubMed] [Google Scholar]
  • 124.Roy K, Mao H-Q, Huang SK, Leong KW. Oral gene delivery with chitosan-DNA nanoparticles generates immunological protection in a murine model of peanut allergy. Nat Med. 1999;5:387–391. doi: 10.1038/7385. [DOI] [PubMed] [Google Scholar]
  • 125.Gitsov I, Lambrych KR. Dendrimers: synthesis and applications. Microspheres, Microcapsules & Liposomes. 2002;5:31–68. [Google Scholar]
  • 126.Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker JR. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm Sci Technol Today. 2000;3:232–245. doi: 10.1016/S1461-5347(00)00273-X. [DOI] [PubMed] [Google Scholar]
  • 127.Zinselmeyer BH, Mackay SP, Schatzlein AG, Uchegbu IF. The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm Res. 2002;19:960–967. doi: 10.1023/A:1016458104359. [DOI] [PubMed] [Google Scholar]
  • 128.Yoo H, Juliano RL. Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res. 2000;28:4225–4231. doi: 10.1093/nar/28.21.4225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Tejada-Berges T, Granai CO, Gordinier M, Gajewski W. Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer. Expert Rev Anticancer Ther. 2002;2:143–150. doi: 10.1586/14737140.2.2.143. [DOI] [PubMed] [Google Scholar]
  • 130.Marshall J, Yew NS, Eastman SJ, Jiang C, Scheule RK, Cheng SH. Cationic lipid-mediated gene delivery to the airways. In: Wagner E, editor. Nonviral Vectors for Gene Therapy. San Diego, CA: Academic Press; 1999. pp. 39–68. [Google Scholar]
  • 131.Felgner JH, Kumar R, Sridhar CN, et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem. 1994;269:2550–2561. [PubMed] [Google Scholar]
  • 132.Hofland HEJ, Shephard L, Sullivan SM. Formation of stable cationic lipid/DNA complexes for gene transfer. Proc Natl Acad Sci USA. 1996;93:7305–7309. doi: 10.1073/pnas.93.14.7305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Kang S-H, Zirbes EL, Kole R. Delivery of antisense oligonucleotides and plasmid DNA with various carrier agents. Antisense Nucleic Acid Drug Dev. 1999;9:497–505. doi: 10.1089/oli.1.1999.9.497. [DOI] [PubMed] [Google Scholar]
  • 134.Lappalainen K, Jaaskelainen I, Syrjanen K, Urtti A, Syrjanen S. Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharm Res. 1994;11:1127–1131. doi: 10.1023/A:1018932714745. [DOI] [PubMed] [Google Scholar]
  • 135.Patil SD, Rhodes DG, Burgess DJ. Anionic liposomal delivery system for DNA transfection. The AAPS Journal. 2004;6:E29–E29. doi: 10.1208/aapsj060429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res. 2000;17:521–525. doi: 10.1023/A:1007504613351. [DOI] [PubMed] [Google Scholar]
  • 137.Filion MC, Phillips NC. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta. 1997;1329:345–356. doi: 10.1016/S0005-2736(97)00126-0. [DOI] [PubMed] [Google Scholar]
  • 138.Freimark BD, Blezinger HP, Florack VJ, et al. Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J Immunol. 1998;160:4580–4586. [PubMed] [Google Scholar]
  • 139.Lee H, Williams SKR, Allison SD, Anchordoquy TJ. Analysis of self-assembled cationic lipid-DNA gene carrier complexes using flow field-flow fractionation and light scattering. Anal Chem. 2001;73:837–843. doi: 10.1021/ac000831n. [DOI] [PubMed] [Google Scholar]
  • 140.Audouy S, Molema G, Leij L, Hoekstra D. Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. J Gene Med. 2000;2:465–476. doi: 10.1002/1521-2254(200011/12)2:6<465::AID-JGM141>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  • 141.Liu F, Qi H, Huang L, Liu D. Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther. 1997;4:517–523. doi: 10.1038/sj.gt.3300424. [DOI] [PubMed] [Google Scholar]
  • 142.Wheeler CJ, Felgner PL, Tsai YJ, et al. A novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung. Proc Natl Acad Sci USA. 1996;93:11454–11459. doi: 10.1073/pnas.93.21.11454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Fillion P, Desjardins A, Sayasith K, Lagace J. Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid liposome-encapsulated antisense oligonucleotides. Biochim Biophys Acta. 2001;1515:44–54. doi: 10.1016/S0005-2736(01)00392-3. [DOI] [PubMed] [Google Scholar]
  • 144.Lakkaraju A, Dubinsky JM, Low WC, Rahman Y-E. Neurons are protected from excitotoxic death by p53 antisense oligonucleotides delivered in anionic liposomes. J Biol Chem. 2001;276:32000–32007. doi: 10.1074/jbc.M100138200. [DOI] [PubMed] [Google Scholar]
  • 145.Patil SD, Rhodes DG. Conformation of oligodeoxynucleotides associated with anionic liposomes. Nucleic Acids Res. 2000;28:4125–4129. doi: 10.1093/nar/28.21.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Patil SD, Rhodes DG, Burgess DJ. Biophysical characterization of anionic lipoplexesBiochim Biophys Acta.-Biomembranes. 2005; In Press. [DOI] [PubMed]
  • 147.Lee RJ, Huang L. Lipidic vector systems for gene transfer. Crit Rev Ther Drug Carrier Syst. 1997;14:173–206. [PubMed] [Google Scholar]
  • 148.Guo W, Gosselin MA, Lee RJ. Characterization of a novel diolein-based LPDII vector for gene delivery. J Control Release. 2002;83:121–132. doi: 10.1016/S0168-3659(02)00167-0. [DOI] [PubMed] [Google Scholar]
  • 149.Perrie Y, Gregoriadis G. Liposome-entrapped plasmid DNA: characterization studies. Biochim Biophys Acta. 2000;1475:125–132. doi: 10.1016/s0304-4165(00)00055-6. [DOI] [PubMed] [Google Scholar]
  • 150.Venugopalan P, Jain S, Sankar S, Singh P, Rawat A, Vyas SP. pH-Sensitive liposomes: mechanism of triggered release to drug and gene delivery prospects. Pharmazie. 2002;57:659–671. [PubMed] [Google Scholar]
  • 151.Maclean AL, Symonds G, Ward R. Immunoliposomes as targeted delivery vehicles for cancer therapeutics (Review) Int J Oncol. 1997;11:325–332. doi: 10.3892/ijo.11.2.325. [DOI] [PubMed] [Google Scholar]
  • 152.Legendre JY, Szoka FC. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res. 1992;9:1235–1242. doi: 10.1023/A:1015836829670. [DOI] [PubMed] [Google Scholar]
  • 153.Reddy JA, Low PS. Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation. J Control Release. 2000;64(1–3):27–37. doi: 10.1016/S0168-3659(99)00135-2. [DOI] [PubMed] [Google Scholar]
  • 154.Sviridov YV, Zhdanov RI, Podobed OV, Tsvetkova TA, Konstantinov I, Bogdanenko EV. The LacZ gene transfer into L929 cells and [14C]-DNA tissue distribution following intraperitoneal administration of new pH-sensitive lipoplexes in mice. Cytobios. 2001;106(suppl 1):7–14. [PubMed] [Google Scholar]
  • 155.Xu L, Huang C-C, Huang W, et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther. 2002;1:337–346. [PubMed] [Google Scholar]
  • 156.Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM. Brain-specific expression of an exogenous gene after IV administration. Proc Natl Acad Sci USA. 2001;98:12754–12759. doi: 10.1073/pnas.221450098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Khaw BA, Silva J, Vural I, Narula J, Torchilin VP. Intracytoplasmic gene delivery for in vitro transfection with cytoskeleton-specific immunoliposomes. J Control Release. 2001;75(1–2):199–210. doi: 10.1016/S0168-3659(01)00364-9. [DOI] [PubMed] [Google Scholar]
  • 158.Krauss WC, Park JW, Kirpotin DB, Hong K, Benz CC. Emerging antibody-based HER2 (ErbB-2/neu) therapeutics. Breast Disease. 2000;11:113–124. doi: 10.3233/bd-1999-11110. [DOI] [PubMed] [Google Scholar]
  • 159.Mannisto M, Vanderkerken S, Toncheva V, et al. Structure-activity relationships of poly(l-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J Control Release. 2002;83:169–182. doi: 10.1016/S0168-3659(02)00178-5. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES