Skip to main content
Molecular Biology of the Cell logoLink to Molecular Biology of the Cell
. 1992 Mar;3(3):335–347. doi: 10.1091/mbc.3.3.335

Transmembrane-mediated changes in [Ca2+] are involved in the signaling pathway leading to macrophage cytocidal differentiation: implications of localized changes in intracellular [Ca2+] and of interferon priming on Ca2+ utilization.

G A Underwood 1, D W Riches 1
PMCID: PMC275534  PMID: 1627833

Abstract

Macrophage cytocidal activation requires the sequential impingement on the macrophage of a priming stimulus (interferon [IFN] alpha, beta, or gamma) and a triggering stimulus (such as polyinosinic acid:polycytidylic acid [poly [I:C]] or bacterial lipopolysaccharide). The mechanism of progression from the IFN-primed state to the cytocidal state is poorly understood. By quantifying the level of expression of a gene product (complement component factor B [Bf]) associated with cytocidal activation and through the use of phenotypically distinct populations of macrophages (unprimed and IFN-primed), we have investigated the functional necessity of changes in intracellular concentration of free calcium ions ([Ca2+]i) in signaling the transition from the primed to the cytocidal state. Elevating the [Ca2+]i by incubation of unprimed macrophages with the calcium ionophore, ionomycin, failed to induce the expression of Bf. By contrast, Bf was expressed at high levels when IFN-primed macrophages were exposed to ionomycin, suggesting that priming induced within the macrophages the capacity to respond to a nonspecific change in [Ca2+]i. Quantification of the [Ca2+]i in response to exposure to ionomycin revealed an initial transient elevation, followed by a secondary sustained component. No differences in these changes were observed between unprimed and IFN-primed macrophages. We therefore questioned if changes in [Ca2+]i were also implicated in the transition between the primed and the cytocidal state using the ligand, poly [I:C]. In contrast to ionomycin, incubation of IFN-primed macrophages with poly [I:C] did not sustain measurable increases in [Ca2+]i, yet fully stimulated the transition from the IFN primed to the cytocidal state. However, incubation of IFN-primed macrophages with poly [I:C] in the presence of 1) a Ca2+/ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid buffer calculated to clamp the extracellular concentration of free calcium ions to a value approximately equal to the resting [Ca2+]i; 2) the calcium channel blocker verapamil; or 3) the intracellular Ca2+ antagonists (W-7, W-13, and TMB-8) substantially inhibited the induction of Bf. Collectively, these data support the following conclusions. First, that changes in [Ca2+]i comprise an important element in the induction of progression from the IFN-primed to the cytocidal state. Second, the failure to detect global changes in [Ca2+]i in response to the ligand, poly [I:C], suggests that changes in [Ca2+]i or Ca2+ movement may occur in either a spatially restricted or in an asynchronous cyclical fashion and are not detected by population fluorescence measurements. Third, the source of the relevant Ca2+ is extracellular. Fourth, our findings suggest that priming influences macrophage functional responses at a locus that is distal to the changes in [Ca2+]i, thereby potentially allowing signaling processes to be utilized to initiate different cellular responses.

Full text

PDF
335

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  2. Alexander P., Evans R. Endotoxin and double stranded RNA render macrophages cytotoxic. Nat New Biol. 1971 Jul 21;232(29):76–78. doi: 10.1038/newbio232076a0. [DOI] [PubMed] [Google Scholar]
  3. Alkon D. L., Rasmussen H. A spatial-temporal model of cell activation. Science. 1988 Feb 26;239(4843):998–1005. doi: 10.1126/science.2830669. [DOI] [PubMed] [Google Scholar]
  4. Birx D. L., Berger M., Fleisher T. A. The interference of T cell activation by calcium channel blocking agents. J Immunol. 1984 Dec;133(6):2904–2909. [PubMed] [Google Scholar]
  5. Bonventre J. V., Skorecki K. L., Kreisberg J. I., Cheung J. Y. Vasopressin increases cytosolic free calcium concentration in glomerular mesangial cells. Am J Physiol. 1986 Jul;251(1 Pt 2):F94–102. doi: 10.1152/ajprenal.1986.251.1.F94. [DOI] [PubMed] [Google Scholar]
  6. Boraschi D., Censini S., Bartalini M., Scapigliati G., Barbarulli G., Vicenzi E., Donati M. B., Tagliabue A. Interferon inhibits prostaglandin biosynthesis in macrophages: effects on arachidonic acid metabolism. J Immunol. 1984 Apr;132(4):1987–1992. [PubMed] [Google Scholar]
  7. Boraschi D., Censini S., Bartalini M., Tagliabue A. Regulation of arachidonic acid metabolism in macrophages by immune and nonimmune interferons. J Immunol. 1985 Jul;135(1):502–505. [PubMed] [Google Scholar]
  8. Browning J. L., Ribolini A. Interferon blocks interleukin 1-induced prostaglandin release from human peripheral monocytes. J Immunol. 1987 May 1;138(9):2857–2863. [PubMed] [Google Scholar]
  9. Chang J., Blazek E., Carlson R. P. Inhibition of phospholipase A2 (PLA2) activity by nifedipine and nisoldipine is independent of their calcium-channel-blocking activity. Inflammation. 1987 Sep;11(3):353–364. doi: 10.1007/BF00915839. [DOI] [PubMed] [Google Scholar]
  10. Chiou C. Y., Malagodi M. H. Studies on the mechanism of action of a new Ca-2+ antagonist, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride in smooth and skeletal muscles. Br J Pharmacol. 1975 Feb;53(2):279–285. doi: 10.1111/j.1476-5381.1975.tb07359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cole F. S., Auerbach H. S., Goldberger G., Colten H. R. Tissue-specific pretranslational regulation of complement production in human mononuclear phagocytes. J Immunol. 1985 Apr;134(4):2610–2616. [PubMed] [Google Scholar]
  12. De Whalley C. V., Riches D. W. Influence of the cytocidal macrophage phenotype on the degradation of acetylated low density lipoproteins: dual regulation of scavenger receptor activity and of intracellular degradation of endocytosed ligand. Exp Cell Res. 1991 Feb;192(2):460–468. doi: 10.1016/0014-4827(91)90065-3. [DOI] [PubMed] [Google Scholar]
  13. DeCoursey T. E., Chandy K. G., Gupta S., Cahalan M. D. Voltage-dependent ion channels in T-lymphocytes. J Neuroimmunol. 1985 Nov;10(1):71–95. doi: 10.1016/0165-5728(85)90035-9. [DOI] [PubMed] [Google Scholar]
  14. Di Virgilio F., Steinberg T. H., Swanson J. A., Silverstein S. C. Fura-2 secretion and sequestration in macrophages. A blocker of organic anion transport reveals that these processes occur via a membrane transport system for organic anions. J Immunol. 1988 Feb 1;140(3):915–920. [PubMed] [Google Scholar]
  15. Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
  16. Drysdale B. E., Yapundich R. A., Shin M. L., Shin H. S. Lipopolysaccharide-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity. J Immunol. 1987 Feb 1;138(3):951–956. [PubMed] [Google Scholar]
  17. Evans R., Alexander P. Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature. 1970 Nov 14;228(5272):620–622. doi: 10.1038/228620a0. [DOI] [PubMed] [Google Scholar]
  18. Gelfand E. W., Mills G. B., Cheung R. K., Lee J. W., Grinstein S. Transmembrane ion fluxes during activation of human T lymphocytes: role of Ca2+, Na+/H+ exchange and phospholipid turnover. Immunol Rev. 1987 Feb;95:59–87. doi: 10.1111/j.1600-065x.1987.tb00500.x. [DOI] [PubMed] [Google Scholar]
  19. Gorecka-Tisera A. M., McCulloch M. A. Extracellular calcium is not an absolute requirement for tumoricidal activation of RAW-264 macrophage-like cell line. J Leukoc Biol. 1986 Aug;40(2):203–214. doi: 10.1002/jlb.40.2.203. [DOI] [PubMed] [Google Scholar]
  20. Gorecka-Tisera A. M., Snowdowne K. W., Borle A. B. Implications of a rise in cytosolic free calcium in the activation of RAW-264 macrophages for tumor cell killing. Cell Immunol. 1986 Jul;100(2):411–421. doi: 10.1016/0008-8749(86)90040-7. [DOI] [PubMed] [Google Scholar]
  21. Greenberg S., Di Virgilio F., Steinberg T. H., Silverstein S. C. Extracellular nucleotides mediate Ca2+ fluxes in J774 macrophages by two distinct mechanisms. J Biol Chem. 1988 Jul 25;263(21):10337–10343. [PubMed] [Google Scholar]
  22. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  23. Hagenlocker B. E., Walker B. A., Ward P. A. Superoxide responses of immune complex-stimulated rat alveolar macrophages. Intracellular calcium and priming. J Immunol. 1990 May 15;144(10):3898–3906. [PubMed] [Google Scholar]
  24. Hibbs J. B., Jr, Lambert L. H., Jr, Remington J. S. Control of carcinogenesis: a possible role for the activated macrophage. Science. 1972 Sep 15;177(4053):998–1000. doi: 10.1126/science.177.4053.998. [DOI] [PubMed] [Google Scholar]
  25. Hogan M. M., Vogel S. N. Lipid A-associated proteins provide an alternate "second signal" in the activation of recombinant interferon-gamma-primed, C3H/HeJ macrophages to a fully tumoricidal state. J Immunol. 1987 Dec 1;139(11):3697–3702. [PubMed] [Google Scholar]
  26. Imber M. J., Pizzo S. V., Johnson W. J., Adams D. O. Selective diminution of the binding of mannose by murine macrophages in the late stages of activation. J Biol Chem. 1982 May 10;257(9):5129–5135. [PubMed] [Google Scholar]
  27. Kao J. P., Alderton J. M., Tsien R. Y., Steinhardt R. A. Active involvement of Ca2+ in mitotic progression of Swiss 3T3 fibroblasts. J Cell Biol. 1990 Jul;111(1):183–196. doi: 10.1083/jcb.111.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Koerner T. J., Adams D. O., Hamilton T. A. Regulation of tumor necrosis factor (TNF) expression: interferon-gamma enhances the accumulation of mRNA for TNF induced by lipopolysaccharide in murine peritoneal macrophages. Cell Immunol. 1987 Oct 15;109(2):437–443. doi: 10.1016/0008-8749(87)90326-1. [DOI] [PubMed] [Google Scholar]
  29. Kojima I., Kojima K., Rasmussen H. Characteristics of angiotensin II-, K+- and ACTH-induced calcium influx in adrenal glomerulosa cells. Evidence that angiotensin II, K+, and ACTH may open a common calcium channel. J Biol Chem. 1985 Aug 5;260(16):9171–9176. [PubMed] [Google Scholar]
  30. Kojima I., Kojima K., Rasmussen H. Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion from adrenal glomerulosa cells. J Biol Chem. 1985 Aug 5;260(16):9177–9184. [PubMed] [Google Scholar]
  31. Kruskal B. A., Maxfield F. R. Cytosolic free calcium increases before and oscillates during frustrated phagocytosis in macrophages. J Cell Biol. 1987 Dec;105(6 Pt 1):2685–2693. doi: 10.1083/jcb.105.6.2685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  33. Leblanc N., Hume J. R. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science. 1990 Apr 20;248(4953):372–376. doi: 10.1126/science.2158146. [DOI] [PubMed] [Google Scholar]
  34. Lederer W. J., Niggli E., Hadley R. W. Sodium-calcium exchange in excitable cells: fuzzy space. Science. 1990 Apr 20;248(4953):283–283. doi: 10.1126/science.2326638. [DOI] [PubMed] [Google Scholar]
  35. Leu R. W., Herriott M. J. Triggering of interferon gamma-primed macrophages by various known complement activators for nonspecific tumor cytotoxicity. Cell Immunol. 1987 Apr 15;106(1):114–121. doi: 10.1016/0008-8749(87)90154-7. [DOI] [PubMed] [Google Scholar]
  36. Levine L. Inhibition of the A-23187-stimulated leukotriene and prostaglandin biosynthesis of rat basophil leukemia (RBL-1) cells by nonsteroidal anti-inflammatory drugs, antioxidants, and calcium channel blockers. Biochem Pharmacol. 1983 Oct 15;32(20):3023–3026. doi: 10.1016/0006-2952(83)90244-7. [DOI] [PubMed] [Google Scholar]
  37. Lew P. D., Stossel T. P. Calcium transport by macrophage plasma membranes. J Biol Chem. 1980 Jun 25;255(12):5841–5846. [PubMed] [Google Scholar]
  38. McCann F. V., Cole J. J., Guyre P. M., Russell J. A. Action potentials in macrophages derived from human monocytes. Science. 1983 Feb 25;219(4587):991–993. doi: 10.1126/science.6823563. [DOI] [PubMed] [Google Scholar]
  39. Michell R. H., Jafferji S. S., Jones L. M. Receptor occupancy dose--response curve suggests that phosphatidyl-inositol breakdown may be intrinsic to the mechanism of the muscarinic cholinergic receptor. FEBS Lett. 1976 Oct 15;69(1):1–5. doi: 10.1016/0014-5793(76)80640-0. [DOI] [PubMed] [Google Scholar]
  40. Pace J. L., Russell S. W. Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. J Immunol. 1981 May;126(5):1863–1867. [PubMed] [Google Scholar]
  41. Pace J. L., Russell S. W., LeBlanc P. A., Murasko D. M. Comparative effects of various classes of mouse interferons on macrophage activation for tumor cell killing. J Immunol. 1985 Feb;134(2):977–981. [PubMed] [Google Scholar]
  42. Pace J. L., Taffet S. M., Russell S. W. The effect of endotoxin in eliciting agents on the activation of mouse macrophages for tumor cell killing. J Reticuloendothel Soc. 1981 Jul;30(1):15–21. [PubMed] [Google Scholar]
  43. Prpic V., Weiel J. E., Somers S. D., DiGuiseppi J., Gonias S. L., Pizzo S. V., Hamilton T. A., Herman B., Adams D. O. Effects of bacterial lipopolysaccharide on the hydrolysis of phosphatidylinositol-4,5-bisphosphate in murine peritoneal macrophages. J Immunol. 1987 Jul 15;139(2):526–533. [PubMed] [Google Scholar]
  44. Riches D. W., Channon J. Y., Leslie C. C., Henson P. M. Receptor-mediated signal transduction in mononuclear phagocytes. Prog Allergy. 1988;42:65–122. [PubMed] [Google Scholar]
  45. Riches D. W., Henson P. M. Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages. J Cell Biol. 1986 May;102(5):1606–1614. doi: 10.1083/jcb.102.5.1606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Riches D. W., Henson P. M. Functional aspects of mononuclear phagocyte involvement in lung inflammation. Ann N Y Acad Sci. 1986;465:6–14. doi: 10.1111/j.1749-6632.1986.tb18475.x. [DOI] [PubMed] [Google Scholar]
  47. Riches D. W., Henson P. M., Remigio L. K., Catterall J. F., Strunk R. C. Differential regulation of gene expression during macrophage activation with a polyribonucleotide. The role of endogenously derived IFN. J Immunol. 1988 Jul 1;141(1):180–188. [PubMed] [Google Scholar]
  48. Riches D. W., Underwood G. A. Expression of interferon-beta during the triggering phase of macrophage cytocidal activation. Evidence for an autocrine/paracrine role in the regulation of this state. J Biol Chem. 1991 Dec 25;266(36):24785–24792. [PubMed] [Google Scholar]
  49. Richter J., Olsson I., Andersson T. Correlation between spontaneous oscillations of cytosolic free Ca2+ and tumor necrosis factor-induced degranulation in adherent human neutrophils. J Biol Chem. 1990 Aug 25;265(24):14358–14363. [PubMed] [Google Scholar]
  50. Roberts B. E., Paterson B. M. Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2330–2334. doi: 10.1073/pnas.70.8.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ruco L. P., Meltzer M. S. Macrophage activation for tumor cytotoxicity: development of macrophage cytotoxic activity requires completion of a sequence of short-lived intermediary reactions. J Immunol. 1978 Nov;121(5):2035–2042. [PubMed] [Google Scholar]
  52. Russell S. W., Doe W. F., McIntosh A. T. Functional characterization of a stable, noncytolytic stage of macrophage activation in tumors. J Exp Med. 1977 Dec 1;146(6):1511–1520. doi: 10.1084/jem.146.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Simchowitz L., Cragoe E. J., Jr Na+-Ca2+ exchange in human neutrophils. Am J Physiol. 1988 Jan;254(1 Pt 1):C150–C164. doi: 10.1152/ajpcell.1988.254.1.C150. [DOI] [PubMed] [Google Scholar]
  54. Simchowitz L., Foy M. A., Cragoe E. J., Jr A role for Na+/Ca2+ exchange in the generation of superoxide radicals by human neutrophils. J Biol Chem. 1990 Aug 15;265(23):13449–13456. [PubMed] [Google Scholar]
  55. Smallwood J. I., Gügi B., Rasmussen H. Regulation of erythrocyte Ca2+ pump activity by protein kinase C. J Biol Chem. 1988 Feb 15;263(5):2195–2202. [PubMed] [Google Scholar]
  56. Somers S. D., Mastin J. P., Adams D. O. The binding of tumor cells by murine mononuclear phagocytes can be divided into two qualitatively distinct types. J Immunol. 1983 Oct;131(4):2086–2093. [PubMed] [Google Scholar]
  57. Stuehr D. J., Marletta M. A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738–7742. doi: 10.1073/pnas.82.22.7738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tanaka T., Hidaka H. Hydrophobic regions function in calmodulin-enzyme(s) interactions. J Biol Chem. 1980 Dec 10;255(23):11078–11080. [PubMed] [Google Scholar]
  59. Taramelli D., Varesio L. Activation of murine macrophages. I. Different pattern of activation by poly I:C than by lymphokine or LPS. J Immunol. 1981 Jul;127(1):58–63. [PubMed] [Google Scholar]
  60. Torres B. A., Johnson H. M. Lipopolysaccharide and polyribonucleotide activation of macrophages: implications for a natural triggering signal in tumor cell killing. Biochem Biophys Res Commun. 1985 Aug 30;131(1):395–401. doi: 10.1016/0006-291x(85)91815-7. [DOI] [PubMed] [Google Scholar]
  61. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
  62. Tsien R., Pozzan T. Measurement of cytosolic free Ca2+ with quin2. Methods Enzymol. 1989;172:230–262. doi: 10.1016/s0076-6879(89)72017-6. [DOI] [PubMed] [Google Scholar]
  63. Volpi M., Naccache P. H., Sha'afi R. I. Calcium transport in inside-out membrane vesicles prepared from rabbit neutrophils. J Biol Chem. 1983 Apr 10;258(7):4153–4158. [PubMed] [Google Scholar]
  64. Waisman D. M., Smallwood J., Lafreniere D., Rasmussen H. The role of band III in calcium transport across the human erythrocyte membrane. FEBS Lett. 1982 Aug 23;145(2):337–340. doi: 10.1016/0014-5793(82)80195-6. [DOI] [PubMed] [Google Scholar]
  65. Woehlck H. J., McCann F. V. Action potentials in human macrophages are calcium spikes. Cell Biol Int Rep. 1986 Jul;10(7):517–525. doi: 10.1016/0309-1651(86)90026-3. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Biology of the Cell are provided here courtesy of American Society for Cell Biology

RESOURCES