Skip to main content
Molecular Biology of the Cell logoLink to Molecular Biology of the Cell
. 1996 Dec;7(12):1857–1864. doi: 10.1091/mbc.7.12.1857

Disruption of actin filaments increases the activity of sodium-conducting channels in human myeloid leukemia cells.

Y A Negulyaev 1, E A Vedernikova 1, A V Maximov 1
PMCID: PMC276035  PMID: 8970150

Abstract

With the use of the patch clamp technique, the role of cytoskeleton in the regulation of ion channels in plasma membrane of leukemic K562 cells was examined. Single-channel measurements have indicated that disruption of actin filaments with cytochalasin D (CD) resulted in a considerable increase of the activity of non-voltage-gated sodium-permeable channels of 12 pS unitary conductance. Background activity of these channels was low; open probability (po) did not exceed 0.01-0.02. After CD, po grew at least 10-20 times. Cell-attached and whole-cell recordings showed that activation of sodium channels was elicited within 1-3 min after the addition of 10-20 micrograms/ml CD to the bath extracellular solution or in the presence of 5 micrograms/ml CD in the intracellular pipette solution. Preincubation of K562 cells with CD during 1 h also increased drastically the activity of 12 pS sodium channels. Whole-cell measurements confirmed that CD-activated channels were permeable to monovalent cations (preferentially to Na+ and Li+), but not to bivalent cations (Ca2+, Ba2+). Colchicine (1 microM), which affect microtubules, did not alter background channel activity. Our data indicate that actin filaments organization plays an important role in the regulation of sodium-permeable channels which may participate in providing passive Na+ influx in red blood cells.

Full text

PDF
1857

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balke C. W., Wier W. G. Modulation of L-type calcium channels by sodium ions. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4417–4421. doi: 10.1073/pnas.89.10.4417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basudev H., Romano-Silva M. A., Brammer M. J., Campbell I. C. Effects of sodium on PKC translocation; relationship to neurotransmitter release. Neuroreport. 1995 Mar 27;6(5):809–812. doi: 10.1097/00001756-199503270-00026. [DOI] [PubMed] [Google Scholar]
  3. Benos D. J., Awayda M. S., Ismailov I. I., Johnson J. P. Structure and function of amiloride-sensitive Na+ channels. J Membr Biol. 1995 Jan;143(1):1–18. doi: 10.1007/BF00232519. [DOI] [PubMed] [Google Scholar]
  4. Cantiello H. F., Stow J. L., Prat A. G., Ausiello D. A. Actin filaments regulate epithelial Na+ channel activity. Am J Physiol. 1991 Nov;261(5 Pt 1):C882–C888. doi: 10.1152/ajpcell.1991.261.5.C882. [DOI] [PubMed] [Google Scholar]
  5. Carraway K. L., Carraway C. A. Signaling, mitogenesis and the cytoskeleton: where the action is. Bioessays. 1995 Feb;17(2):171–175. doi: 10.1002/bies.950170212. [DOI] [PubMed] [Google Scholar]
  6. Devarajan P., Scaramuzzino D. A., Morrow J. S. Ankyrin binds to two distinct cytoplasmic domains of Na,K-ATPase alpha subunit. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2965–2969. doi: 10.1073/pnas.91.8.2965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goddette D. W., Frieden C. Actin polymerization. The mechanism of action of cytochalasin D. J Biol Chem. 1986 Dec 5;261(34):15974–15980. [PubMed] [Google Scholar]
  8. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  9. Harootunian A. T., Kao J. P., Eckert B. K., Tsien R. Y. Fluorescence ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes. J Biol Chem. 1989 Nov 15;264(32):19458–19467. [PubMed] [Google Scholar]
  10. Harvey R. D., Jurevicius J. A., Hume J. R. Intracellular Na+ modulates the cAMP-dependent regulation of ion channels in the heart. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6946–6950. doi: 10.1073/pnas.88.16.6946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffmann E. K., Dunham P. B. Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol. 1995;161:173–262. doi: 10.1016/s0074-7696(08)62498-5. [DOI] [PubMed] [Google Scholar]
  12. Ismailov I. I., Berdiev B. K., Benos D. J. Biochemical status of renal epithelial Na+ channels determines apparent channel conductance, ion selectivity, and amiloride sensitivity. Biophys J. 1995 Nov;69(5):1789–1800. doi: 10.1016/S0006-3495(95)80049-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levitan I., Almonte C., Mollard P., Garber S. S. Modulation of a volume-regulated chloride current by F-actin. J Membr Biol. 1995 Oct;147(3):283–294. doi: 10.1007/BF00234526. [DOI] [PubMed] [Google Scholar]
  14. Luna E. J., Hitt A. L. Cytoskeleton--plasma membrane interactions. Science. 1992 Nov 6;258(5084):955–964. doi: 10.1126/science.1439807. [DOI] [PubMed] [Google Scholar]
  15. Martinac B., Adler J., Kung C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature. 1990 Nov 15;348(6298):261–263. doi: 10.1038/348261a0. [DOI] [PubMed] [Google Scholar]
  16. Morris C. E. Mechanosensitive ion channels. J Membr Biol. 1990 Feb;113(2):93–107. doi: 10.1007/BF01872883. [DOI] [PubMed] [Google Scholar]
  17. Motulsky H. J., Insel P. A. Influence of sodium on the alpha 2-adrenergic receptor system of human platelets. Role for intraplatelet sodium in receptor binding. J Biol Chem. 1983 Mar 25;258(6):3913–3919. [PubMed] [Google Scholar]
  18. Negulyaev YuA, Vedernikova E. A., Mozhayeva G. N. Several types of sodium-conducting channel in human carcinoma A-431 cells. Biochim Biophys Acta. 1994 Aug 24;1194(1):171–175. doi: 10.1016/0005-2736(94)90217-8. [DOI] [PubMed] [Google Scholar]
  19. Negulyaev Y. A., Vedernikova E. A. Sodium-selective channels in membranes of rat macrophages. J Membr Biol. 1994 Feb;138(1):37–45. doi: 10.1007/BF00211067. [DOI] [PubMed] [Google Scholar]
  20. Prat A. G., Bertorello A. M., Ausiello D. A., Cantiello H. F. Activation of epithelial Na+ channels by protein kinase A requires actin filaments. Am J Physiol. 1993 Jul;265(1 Pt 1):C224–C233. doi: 10.1152/ajpcell.1993.265.1.C224. [DOI] [PubMed] [Google Scholar]
  21. Rotin D., Bar-Sagi D., O'Brodovich H., Merilainen J., Lehto V. P., Canessa C. M., Rossier B. C., Downey G. P. An SH3 binding region in the epithelial Na+ channel (alpha rENaC) mediates its localization at the apical membrane. EMBO J. 1994 Oct 3;13(19):4440–4450. doi: 10.1002/j.1460-2075.1994.tb06766.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982 Jan;92(1):79–91. doi: 10.1083/jcb.92.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schwiebert E. M., Mills J. W., Stanton B. A. Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem. 1994 Mar 11;269(10):7081–7089. [PubMed] [Google Scholar]
  24. Smith P. R., Saccomani G., Joe E. H., Angelides K. J., Benos D. J. Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6971–6975. doi: 10.1073/pnas.88.16.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sokabe M., Sachs F., Jing Z. Q. Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J. 1991 Mar;59(3):722–728. doi: 10.1016/S0006-3495(91)82285-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Srinivasan Y., Elmer L., Davis J., Bennett V., Angelides K. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature. 1988 May 12;333(6169):177–180. doi: 10.1038/333177a0. [DOI] [PubMed] [Google Scholar]
  27. Suzuki M., Miyazaki K., Ikeda M., Kawaguchi Y., Sakai O. F-actin network may regulate a Cl- channel in renal proximal tubule cells. J Membr Biol. 1993 May;134(1):31–39. doi: 10.1007/BF00233473. [DOI] [PubMed] [Google Scholar]
  28. Van Renterghem C., Lazdunski M. A new non-voltage-dependent, epithelial-like Na+ channel in vascular smooth muscle cells. Pflugers Arch. 1991 Oct;419(3-4):401–408. doi: 10.1007/BF00371123. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Biology of the Cell are provided here courtesy of American Society for Cell Biology

RESOURCES