Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 Jul 7;8(3):E433–E442. doi: 10.1208/aapsj080351

Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats

Young Jin Moon 1, Kazuko Sagawa 2, Kosea Frederick 2, Shuzhong Zhang 1, Marilyn E Morris 1,
PMCID: PMC2761049  PMID: 17025260

Abstract

Biochanin A(BCA) is a dietary isoflavone present in legumes, most notably red clover, and in many herbal dietary supplements. BCA has been reported to have chemopreventive properties and is metabolized to the isoflavone genistein (GEN), BCA conjugates, and GEN conjugates. The metabolites may contribute to the chemopreventive effects of BCA. The absorption, metabolism, and disposition of BCA have not been determined in rats. Our objective was to evaluate the pharmacokinetics and metabolism of BCA in rats. Male Sprague-Dawley rats were administered BCA by intravenous injection (1 and 5 mg/kg), by intraperitoneal injection (5 and 50 mg/kg), and orally (5 and 50 mg/kg). Plasma and bile samples were enzymatically hydrolyzed in vitro to determine conjugate concentrations for BCA and GEN. Equilibrium dialysis was used to determine protein binding. The BCA and GEN concentrations in plasma, urine, and bile were determined by liquid chromatography-tandem mass spectrometry (LC/MS/MS). The pharmacokinetic parameters of BCA were analyzed by noncompartmental analysis. Significant levels of BCA conjugates and GEN conjugates were detected in plasma and bile. Both BCA and GEN were found to have a high clearance and a large apparent volume of distribution; the bioavailability of both was poor (<4%). Reentry peaks were evident after oral administration of both BCA and GEN, suggesting enterohepatic cycling. The free fraction of BCA in rat plasma was 1.5%. A2-compartment model that included both linear and nonlinear clearance terms and enterohepatic recirculation best described the plasma data. This represents the first evaluation of the dose-dependent pharmacokinetics and metabolism of BCA in rats.

Keywords: Biochanin A, pharmacokinetics, intraperitoneal administration, enterohepatic recirculation, rat, genistein

Full Text

The Full Text of this article is available as a PDF (291.4 KB).

References

  • 1.Dai Q, Franke AA, Jin F, et al. Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai. Cancer Epidemiol Biomarkers Prev. 2002;11:815–821. [PubMed] [Google Scholar]
  • 2.Lissin LW, Cooke JP. Phytoestrogens and cardiovascular health. J Am Coll Cardiol. 2000;35:1403–1410. doi: 10.1016/S0735-1097(00)00590-8. [DOI] [PubMed] [Google Scholar]
  • 3.Nikander E, Metsa-Heikkila M, Ylikorkala O, Tiitinen A. Effects of phytoestrogens on bone turnover in postmenopausal women with a history of breast cancer. J Clin Endocrinol Metab. 2004;89:1207–1212. doi: 10.1210/jc.2003-031166. [DOI] [PubMed] [Google Scholar]
  • 4.Arora A, Nair MG, Strasburg GM. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys. 1998;356:133–141. doi: 10.1006/abbi.1998.0783. [DOI] [PubMed] [Google Scholar]
  • 5.Barnes S. The chemopreventive properties of soy isoflavonoids in animal models of breast cancer. Breast Cancer Res Treat. 1997;46:169–179. doi: 10.1023/A:1005956326155. [DOI] [PubMed] [Google Scholar]
  • 6.Fotsis T, Pepper M, Adlercreutz H, Hase T, Montesano R, Schweigerer L. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J Nutr. 1995;125:790S–797S. doi: 10.1093/jn/125.suppl_3.790S. [DOI] [PubMed] [Google Scholar]
  • 7.Cassady JM, Zennie TM, Chae YH, Ferin MA, Portuondo NE, Baird WM. Use of a mammalian cell culture benzo(a)pyrene metabolism assay for the detection of potential anticarcinogens from natural products: inhibition of metabolism by biochanin A, an isoflavone from Trifolium pratense L. Cancer Res. 1988;48:6257–6261. [PubMed] [Google Scholar]
  • 8.Ying C, Hsu JT, Hung HC, Lin DH, Chen LF, Wang LK. Growth and cell cycle regulation by isoflavones in human breast carcinoma cells. Reprod Nutr Dev. 2002;42:55–64. doi: 10.1051/rnd:2002006. [DOI] [PubMed] [Google Scholar]
  • 9.Onozawa M, Kawamori T, Baba M, et al. Effects of a soybean isoflavone mixture on carcinogenesis in prostate and seminal vesicles of F344 rats. Jpn J Cancer Res. 1999;90:393–398. doi: 10.1111/j.1349-7006.1999.tb00760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Constantinou AI, Mehta RG, Vaughan A. Inhibition of N-methyl-N-nitrosourea-induced mammary tumors in rats by the soybean isoflavones. Anticancer Res. 1996;16:3293–3298. [PubMed] [Google Scholar]
  • 11.Lamartiniere CA, Moore JB, Brown NM, Thompson R, Hardin MJ, Barnes S. Genistein suppresses mammary cancer in rats. Carcinogenesis. 1995;16:2833–2840. doi: 10.1093/carcin/16.11.2833. [DOI] [PubMed] [Google Scholar]
  • 12.Yamakoshi J, Piskula MK, Izumi T, et al. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits. J Nutr. 2000;130:1887–1893. doi: 10.1093/jn/130.8.1887. [DOI] [PubMed] [Google Scholar]
  • 13.Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. J Nutr. 1998;128:954–959. doi: 10.1093/jn/128.6.954. [DOI] [PubMed] [Google Scholar]
  • 14.Merz-Demlow BE, Duncan AM, Wangen KE, et al. Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Am J Clin Nutr. 2000;71:1462–1469. doi: 10.1093/ajcn/71.6.1462. [DOI] [PubMed] [Google Scholar]
  • 15.Gotoh T, Yamada K, Yin H, Ito A, Kataoka T, Dohi K. Chemoprevention of N-nitroso-N-methylurea-induced rat mammary carcinogenesis by soy foods or biochanin A. Jpn J Cancer Res. 1998;89:137–142. doi: 10.1111/j.1349-7006.1998.tb00541.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lee YS, Seo JS, Chung HT, Jang JJ. Inhibitory effects of biochanin A on mouse lung tumor induced by benzo(a)pyrene. J Korean Med Sci. 1991;6:325–328. doi: 10.3346/jkms.1991.6.4.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Rice L, Samedi VG, Medrano TA, et al. Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts. Prostate. 2002;52:201–212. doi: 10.1002/pros.10100. [DOI] [PubMed] [Google Scholar]
  • 18.Atkinson C, Compston JE, Day NE, Dowsett M, Bingham SA. The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2004;79:326–333. doi: 10.1093/ajcn/79.2.326. [DOI] [PubMed] [Google Scholar]
  • 19.Nestel P, Cehun M, Chronopoulos A, DaSilva L, Teede H, McGrath B. A biochanin-enriched isoflavone from red clover lowers LDL cholesterol in men. Eur J Clin Nutr. 2004;58:403–408. doi: 10.1038/sj.ejcn.1601796. [DOI] [PubMed] [Google Scholar]
  • 20.Zhang S, Yang X, Morris ME. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol Pharmacol. 2004;65:1208–1216. doi: 10.1124/mol.65.5.1208. [DOI] [PubMed] [Google Scholar]
  • 21.Zhang S, Morris ME. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J Pharmacol Exp Ther. 2003;304:1258–1267. doi: 10.1124/jpet.102.044412. [DOI] [PubMed] [Google Scholar]
  • 22.Tolleson WH, Doerge DR, Churchwell MI, Marques MM, Roberts DW. Metabolism of biochanin A and formononetin by human liver microsomes in vitro. J Agric Food Chem. 2002;50:4783–4790. doi: 10.1021/jf025549r. [DOI] [PubMed] [Google Scholar]
  • 23.Setchell KD, Brown NM, Desai P, et al. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr. 2001;131:1362S–1375S. doi: 10.1093/jn/131.4.1362S. [DOI] [PubMed] [Google Scholar]
  • 24.Hu M, Krausz K, Chen J, et al. Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones. Drug Metab Dispos. 2003;31:924–931. doi: 10.1124/dmd.31.7.924. [DOI] [PubMed] [Google Scholar]
  • 25.Yanagihara K, Ito A, Toge T, Numoto M. Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Res. 1993;53:5815–5821. [PubMed] [Google Scholar]
  • 26.Roberts DW, Doerge DR, Churchwell MI, Gamboa da Costa G, Marques MM, Tolleson WH. Inhibition of extrahepatic human cytochromes P450 1A1 and 1B1 by metabolism of isoflavones found in Trifolium pratense (red clover) J Agric Food Chem. 2004;52:6623–6632. doi: 10.1021/jf049418x. [DOI] [PubMed] [Google Scholar]
  • 27.Kulling SE, Lehmann L, Metzler M. Oxidative metabolism and genotoxic potential of major isoflavone phytoestrogens. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;777:211–218. doi: 10.1016/S1570-0232(02)00215-5. [DOI] [PubMed] [Google Scholar]
  • 28.Jia X, Chen J, Lin H, Hu M. Disposition of flavonoids via enteric recycling: enzyme-transporter coupling affects metabolism of biochanin A and formononetin and excretion of their phase II conjugates. J Pharmacol Exp Ther. 2004;310:1103–1113. doi: 10.1124/jpet.104.068403. [DOI] [PubMed] [Google Scholar]
  • 29.Peterson TG, Ji GP, Kirk M, Coward L, Falany CN, Barnes S. Metabolism of the isoflavones genistein and biochanin A in human breast cancer cell lines. Am J Clin Nutr. 1998;68:1505S–1511S. doi: 10.1093/ajcn/68.6.1505S. [DOI] [PubMed] [Google Scholar]
  • 30.Sfakianos J, Coward L, Kirk M, Barnes S. Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J Nutr. 1997;127:1260–1268. doi: 10.1093/jn/127.7.1260. [DOI] [PubMed] [Google Scholar]
  • 31.Zhang Y, Song TT, Cunnick JE, Murphy PA, Hendrich S. Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J Nutr. 1999;129:399–405. doi: 10.1093/jn/129.2.399. [DOI] [PubMed] [Google Scholar]
  • 32.Wong CK, Keung WM. Daidzein sulfoconjugates are potent inhibitors of sterol sulfatase (EC 3.1.6.2) Biochem Biophys Res Commun. 1997;233:579–583. doi: 10.1006/bbrc.1997.6502. [DOI] [PubMed] [Google Scholar]
  • 33.Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans, I: review of 97 bioavailability studies. Am J Clin Nutr. 2005;81:230S–242S. doi: 10.1093/ajcn/81.1.230S. [DOI] [PubMed] [Google Scholar]
  • 34.Shelnutt SR, Cimino CO, Wiggins PA, Ronis MJ, Badger TM. Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a soy beverage. Am J Clin Nutr. 2002;76:588–594. doi: 10.1093/ajcn/76.3.588. [DOI] [PubMed] [Google Scholar]
  • 35.Coldham NG, Zhang AQ, Key P, Sauer MJ. Absolute bioavailability of [14C] genistein in the rat: plasma pharmacokinetics of parent compound, genistein glucuronide and total radioactivity. Eur J Drug Metab Pharmacokinet. 2002;27:249–258. doi: 10.1007/BF03192335. [DOI] [PubMed] [Google Scholar]
  • 36.Piskula MK. Factors affecting flavonoids absorption. Biofactors. 2000;12:175–180. doi: 10.1002/biof.5520120128. [DOI] [PubMed] [Google Scholar]
  • 37.Wajima T, Yano Y, Oguma T. A pharmacokinetic model for analysis of drug disposition profiles undergoing enterohepatic circulation. J Pharm Pharmacol. 2002;54:929–934. doi: 10.1211/002235702760089045. [DOI] [PubMed] [Google Scholar]
  • 38.Mizunuma H, Kanazawa K, Ogura S, Otsuka S, Nagai H. Anticarcinogenic effects of isoflavones may be mediated by genistein in mouse mammary tumor virus-induced breast cancer. Oncology. 2002;62:78–84. doi: 10.1159/000048250. [DOI] [PubMed] [Google Scholar]
  • 39.Peterson TG, Coward L, Kirk M, Falany CN, Barnes S. The role of metabolism in mammary epithelial cell growth inhibition by the isoflavones genistein and biochanin A. Carcinogenesis. 1996;17:1861–1869. doi: 10.1093/carcin/17.9.1861. [DOI] [PubMed] [Google Scholar]
  • 40.Howes J, Waring M, Huang L, Howes LG. Long-term pharmacokinetics of an extract of isoflavones from red clover (Trifolium pratense) J Altern Complement Med. 2002;8:135–142. doi: 10.1089/107555302317371424. [DOI] [PubMed] [Google Scholar]
  • 41.Chen J, Halls SC, Alfaro JF, Zhou Z, Hu M. Potential beneficial metabolic interactions between tamoxifen and isoflavones via cytochrome P450-mediated pathways in female rat liver microsomes. Pharm Res. 2004;21:2095–2104. doi: 10.1023/B:PHAM.0000048202.92930.61. [DOI] [PubMed] [Google Scholar]
  • 42.Mallis LM, Sarkahian AB, Harris HA, Zhang MY, McConnell OJ. Determination of rat oral bioavailability of soy-derived phytoestrogens using an automated on-column extraction procedure and electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;796:71–86. doi: 10.1016/j.jchromb.2003.08.003. [DOI] [PubMed] [Google Scholar]
  • 43.Lee YS, Kim TH, Cho KJ, Jang JJ. Inhibitory effects of biochanin A on benzo(a)pyrene induced carcinogenesis in mice. In Vivo. 1992;6:283–286. [PubMed] [Google Scholar]
  • 44.Supko JG, Malspeis L. Plasma pharmacokinetics of genistein in mice. Int J Oncol. 1995;7:847–854. doi: 10.3892/ijo.7.4.847. [DOI] [PubMed] [Google Scholar]
  • 45.Ader P, Wessmann A, Wolffram S. Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic Biol Med. 2000;28:1056–1067. doi: 10.1016/S0891-5849(00)00195-7. [DOI] [PubMed] [Google Scholar]
  • 46.Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther. 2003;304:1228–1235. doi: 10.1124/jpet.102.046409. [DOI] [PubMed] [Google Scholar]
  • 47.Strandgarden K, Hoglund P, Gronquist L, Svensson L, Gunnarsson PO. Absorption and disposition including enterohepatic circulation of (14C) roquinimex after oral administration to healthy volunteers. Biopharm Drug Dispos. 2000;21:53–67. doi: 10.1002/1099-081X(200003)21:2&#x0003c;53::AID-BDD214&#x0003e;3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  • 48.Ouellet DM, Pollack GM. Biliary excretion and enterohepatic recirculation of morphine-3-glucuronide in rats. Drug Metab Dispos. 1995;23:478–484. [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES