Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 Jul 28;8(3):E485–E492. doi: 10.1208/aapsj080357

The kinetics of thiol-mediated decomposition of S-nitrosothiols

Teh-Min Hu 1,, Ta-Chuan Chou 1
PMCID: PMC2761055  PMID: 17025266

Abstract

The reaction of sulfhydryl (SH)-containing molecules (thiols) with S-nitrosothiols (RSNO) has been shown to be of biological importance. Biologically or therapeutically relevant thiols generally have a pKa value ranging from 8 to 10 for the SH group. In addition, some, of these thiols contain a carboxyl group and are acidic, which should be considered in studying the reaction between RSNO and thiols. In the present study, the kinetics of thiol-mediated decomposition of RSNO was investigated in a commonly used phosphate buffer, phosphate buffered saline (PBS; containing 6.9 mM phosphates; buffer capacity=3.8 mM/pH). The thiols studied can be divided into 2 groups, depending on their pH perturbation capacity. The kinetics was studied using a wide range of thiol concentrations (ie, from 0.1 to 10 mM). A high-performance liquid chromatography (HPLC) method was used to determine RSNO concentrations. The results showed that the acidic thiols, including glutathione, captopril, N-acetylcysteine, and tiopronin, stimulated RSNO decomposition at low millimolar concentrations up to 2 mM. The stimulatory effect, however, became attenuated at concentrations higher than 2 mM in PBS. Increasing the concentration of acidic thiols caused a decrease in solution pH, which was attributable, to the inhibitory effect at high thiol concentrations. The effect of thiols on the pH of reaction solution, and the resulting bell-shaped rate profiles, can be predicted by a quantitative analysis, from which a comparison of the intrinsic reactivity toward RSNO, among 8 thiols, was possible. The intrinsic reactivity in general followed the Brønsted relation.

Keywords: kinetics, nitric oxide, S-nitrosothiols, thiol, thiolate anion, S-transnitrosation

Full Text

The Full Text of this article is available as a PDF (321.1 KB).

References

  • 1.Ignarro LJ, Barry BK, Gruetter DY, et al. Guanylate cyclase activation of nitroprusside and nitrosoguanidine is related to formation of S-nitrosothiol intermediates. Biochem Biophys Res Commun. 1980;94:93–100. doi: 10.1016/S0006-291X(80)80192-6. [DOI] [PubMed] [Google Scholar]
  • 2.Ignarro LJ, Edwards JC, Gruetter DY, Barry BK, Gruetter CA. Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds. FEBS Lett. 1980;110:275–278. doi: 10.1016/0014-5793(80)80091-3. [DOI] [PubMed] [Google Scholar]
  • 3.Ignarro LJ, Lippton H, Edwards JC, et al. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981;218:739–749. [PubMed] [Google Scholar]
  • 4.Tao L, English AM. Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione. Biochemistry. 2004;43:4028–4038. doi: 10.1021/bi035924o. [DOI] [PubMed] [Google Scholar]
  • 5.Zhang Y, Hogg N. Formation and stability of S-nitrosothiols in RAW 264.7 cells. Am J Physiol Lung Cell Mol Physiol. 2004;287:L467–L474. doi: 10.1152/ajplung.00350.2003. [DOI] [PubMed] [Google Scholar]
  • 6.Asahi M, Fujii J, Suzuki K, et al. Inactivation of glutathione peroxidase by nitric oxide: iImplication for cytotoxicity. J Biol Chem. 1995;270:21035–21039. doi: 10.1074/jbc.270.36.21035. [DOI] [PubMed] [Google Scholar]
  • 7.Fung HL, Poliszczuk R. Nitrosothiol and nitrate tolerance. Z Kardiol. 1986;75:25–27. [PubMed] [Google Scholar]
  • 8.Bauer JA, Fung HL. Chemical stabilization of a vasoactive S-nitrosothiol with cyclodextrins without loss of pharmacologic activity. Pharm Res. 1991;8:1329–1334. doi: 10.1023/A:1015824417569. [DOI] [PubMed] [Google Scholar]
  • 9.Kowluk EA, Fung HL. Spontaneous liberation of nitric oxide cannot account for in vitro vascular relaxation by S-nitrosothiols. J Pharmacol Exp Ther. 1990;255:1256–1264. [PubMed] [Google Scholar]
  • 10.Stamler JS, Simon DI, Osborne JA, et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA. 1992;89:444–448. doi: 10.1073/pnas.89.1.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Rassaf T, Kleinbongard P, Preik M, et al. Plasma nitrosothiols contribute to the systemic vasodilator effects of intravenously applied NO: experimental and clinical study on the fate of NO in human blood. Circ Res. 2002;91:470–477. doi: 10.1161/01.RES.0000035038.41739.CB. [DOI] [PubMed] [Google Scholar]
  • 12.Keaney JF, Simon DI, Stamler JS, et al. NO forms an adduct with serum albumin that has endothelium-derived relaxing factor-like properties. J Clin Invest. 1993;91:1582–1589. doi: 10.1172/JCI116364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Rassaf T, Bryan NS, Kelm M, Feelisch M. Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Radic Biol Med. 2002;33:1590–1596. doi: 10.1016/S0891-5849(02)01183-8. [DOI] [PubMed] [Google Scholar]
  • 14.Feelisch M, Rassaf T, Mnaimneh S, et al. Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications, for the fate of NO in vivo. FASEB J. 2002;16:1775–1785. doi: 10.1096/fj.02-0363com. [DOI] [PubMed] [Google Scholar]
  • 15.Bryan NS, Rassaf T, Maloney RE, et al. Cellular targets and mechanisms of nitros(yl)ation an insight into their nature and kinetics in vivo. Proc Natl Acad Sci USA. 2004;101:4308–4313. doi: 10.1073/pnas.0306706101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Singh RJ, Hogg N, Joseph J, Kalyanaraman B. Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem. 1996;271:18596–18603. doi: 10.1074/jbc.271.31.18596. [DOI] [PubMed] [Google Scholar]
  • 17.Zhang Y, Hong N. S-nitrosothiols: cellular formation and transport. Free Radic Biol Med. 2005;38:831–838. doi: 10.1016/j.freeradbiomed.2004.12.016. [DOI] [PubMed] [Google Scholar]
  • 18.Liu Z, Rudd MA, Freedman JE, Loscalzo J. S-transnitrosation reactions are involved in the metabolic fate and biological actions of nitric oxide. J Pharmacol Exp Ther. 1998;284:526–534. [PubMed] [Google Scholar]
  • 19.Wang PG, Xian M, Tang X, et al. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 2002;102:1091–1134. doi: 10.1021/cr000040l. [DOI] [PubMed] [Google Scholar]
  • 20.Williams DLH. A chemist’s view of the nitric oxide story. Org Biomol Chem. 2003;1:441–449. doi: 10.1039/b209748f. [DOI] [PubMed] [Google Scholar]
  • 21.Al-Sa’doni HH, Ferro A. S-nitrosothiols as nitric oxide-donors: chemistry, biology and possible future therapeutic applications. Curr Med Chem. 2004;11:2679–2690. doi: 10.2174/0929867043364397. [DOI] [PubMed] [Google Scholar]
  • 22.Jourd’heuil D, Jourd’heuil FL, Feelisch M. Oxidation, and nitrosation of thiols at low micromolar exposure to nitric oxide: evidence for a free radical mechanism. J Biol Chem. 2003;278:15720–15726. doi: 10.1074/jbc.M300203200. [DOI] [PubMed] [Google Scholar]
  • 23.Schrammel A, Gorren AC, Schmidt K, Pfeiffer S, Mayer B. S-nitrosation of glutathione by nitric oxide, peroxynitrite, and (*)NO/O(2)(*−) Free Radic Biol Med. 2003;34:1078–1088. doi: 10.1016/S0891-5849(03)00038-8. [DOI] [PubMed] [Google Scholar]
  • 24.Foster MW, Stamler JS. New insights into protein S-nitrosylation: mitochondria as a model system. J Biol Chem. 2004;279:25891–25897. doi: 10.1074/jbc.M313853200. [DOI] [PubMed] [Google Scholar]
  • 25.Sonnenschein K, De Groot H, Kirsch M. Formation of S-nitrosothiols from regiospecific reaction of thiols with N-nitrosotryptophan-derivatives. J Biol Chem. 2004;279:45433–45440. doi: 10.1074/jbc.M405987200. [DOI] [PubMed] [Google Scholar]
  • 26.Komiyama T, Fujimori K. Kinetics studies of the reaction of S-nitroso-L-cysteine with L-cysteine. Bioorg Med Chem Lett. 1997;7:175–180. doi: 10.1016/S0960-894X(96)00608-7. [DOI] [Google Scholar]
  • 27.Hogg N. The kinetics of S-transnitrosation: a reversible second-order reaction. Anal Biochem. 1999;272:257–262. doi: 10.1006/abio.1999.4199. [DOI] [PubMed] [Google Scholar]
  • 28.Tsikas D, Sandmann J, Rossa S, Gutzki FM, Frolich JC. Investigations of S-transnitrosylation reactions between low- and high-molecular-weight S-nitroso compounds and their thiols by high-performance liquid chromatography and gas chromatography-mass spectrometry. Anal Biochem. 1999;270:231–241. doi: 10.1006/abio.1999.4084. [DOI] [PubMed] [Google Scholar]
  • 29.Wang K, Wen Z, Zhang W, Xian M, Cheng JP, Wang PG. Equilibrium and kinetics studies of transnitrosation between S-nitrosothiols and thiols. Bioorg Med Chem Lett. 2001;11:433–436. doi: 10.1016/S0960-894X(00)00688-0. [DOI] [PubMed] [Google Scholar]
  • 30.Barnett DJ, Rios A, Williams DLH. NO-group transfer (transnitrosation) between S-nitrosothiols and thiols. Part 2.J Chem Soc. [Perkin 2]. 1995; 1279–1282.
  • 31.Wong PS, Hyun J, Fukuto JM, et al. Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry. 1998;37:5362–5371. doi: 10.1021/bi973153g. [DOI] [PubMed] [Google Scholar]
  • 32.Barnett DJ, McAninly J, Williams DLH. Transnitrosation between nitrosothiols and thiols.J Chem Soc [Perkin 2]. 1994: 1131–1133.
  • 33.Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR. The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci USA. 1996;93:14428–14433. doi: 10.1073/pnas.93.25.14428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Dicks AP, Li E, Munro AP, Swift HR, Williams DLH. The reaction of S-nitrosothiols with thiols at high thiol concentration. Can J Chem. 1998;76:789–794. doi: 10.1139/cjc-76-6-789. [DOI] [Google Scholar]
  • 35.Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem. 1995;270:28158–28164. doi: 10.1074/jbc.270.47.28158. [DOI] [PubMed] [Google Scholar]
  • 36.Läuger P, Apell H-J. A microscopic model for the current-voltage behaviour of the Na,K-pump. Eur Biophys J. 1986;13:309–321. doi: 10.1007/BF00254213. [DOI] [Google Scholar]
  • 37.Martin AN. Physical Pharmacy. Philadelphia, PA: Lippincott Williams & Wilkins; 1993. [Google Scholar]
  • 38.Friedman M, Cavins JF, Wall JS. Relative nucleophilic reactivities of amino acids groups and mercaptide ions in addition reactions with a,b-unsaturated compounds. J Am Chem Soc. 1965;87:3672–3682. doi: 10.1021/ja01094a025. [DOI] [Google Scholar]
  • 39.Reuben DME, Bruice TC. Reaction of thiol anions with benzene oxide and malachite green. J Am Chem Soc. 1976;98:114–121. doi: 10.1021/ja00417a020. [DOI] [Google Scholar]
  • 40.Elson EL, Edsall JT. Raman, spectra and sulfhydryl ionization constants of thioglycolic acid and cysteine. Biochemistry. 1962;1:1–7. doi: 10.1021/bi00907a001. [DOI] [PubMed] [Google Scholar]
  • 41.Benesch RE, Benesch R. The acid strength of the-SH group in cysteine and related compounds. J Am Chem Soc. 1955;77:5877–5881. doi: 10.1021/ja01627a030. [DOI] [Google Scholar]
  • 42.Available at. Available at: http://medicine.cug.net/drug/07/07_02_01.htm. Accessed April 22, 2004.
  • 43.Rabenstein DL. Nuclear magnetic resonance studies of the acid-base chemistry of amino acids and peptides. I. Microscopic ionization. constants of glutathione and methylmercury-complexed glutathione. J Am Chem Soc. 1973;95:2797–2803. doi: 10.1021/ja00790a009. [DOI] [Google Scholar]
  • 44.Danehy JP, Noel CJ. The relative nucleophilic character of several mercaptans toward ethylene oxide. J Am Chem Soc. 1960;82:2511–2515. doi: 10.1021/ja01495a028. [DOI] [Google Scholar]
  • 45.O’Neil MJ, editor. Monography 1780: Captopril. Whitehouse Station, NJ: Merck & Co; 2001. [Google Scholar]
  • 46.Miller AJ, Fiddler W. Inhibitory effects of thiols on a mutagenic contaminant from the synthesis of N-nitrosothiazolidine. Mutat Res. 1987;180:75–79. doi: 10.1016/0027-5107(87)90068-6. [DOI] [PubMed] [Google Scholar]
  • 47.Friedman M, Wehr CM, Schade JE, MacGregor JT. Inactivation of aflatoxin B1 mutagenicity by thiols. Food Chem Toxicol. 1982;20:887–892. doi: 10.1016/S0015-6264(82)80223-X. [DOI] [PubMed] [Google Scholar]
  • 48.Grabe M, Oster G. Regulation of organelle acidity. J Gen Physiol. 2001;117:329–344. doi: 10.1085/jgp.117.4.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Farinas J, Verkman AS. Receptor-mediated targeting of fluorescent probes in living cells. J Biol Chem. 1999;274:7603–7606. doi: 10.1074/jbc.274.12.7603. [DOI] [PubMed] [Google Scholar]
  • 50.Wu MM, Llopis J, Adams S, et al. Organelle pH studies using targeted avidin and fluorescein-biotin. Chem Biol. 2000;7:197–209. doi: 10.1016/S1074-5521(00)00088-0. [DOI] [PubMed] [Google Scholar]
  • 51.Rybak SL, Lanni F, Murphy RF. Theoretical considerations on the role of membrane potential in the regulation of endosomal pH. Biophys J. 1997;73:674–687. doi: 10.1016/S0006-3495(97)78102-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–1212. doi: 10.1016/S0891-5849(01)00480-4. [DOI] [PubMed] [Google Scholar]
  • 53.Smith CV, Jones DP, Guenthner TM, Lash LH, Lauterburg BH. Compartmentation of glutathione: implications for the study of toxicity and disease. Toxicol Appl Pharmacol. 1996;140:1–12. doi: 10.1006/taap.1996.0191. [DOI] [PubMed] [Google Scholar]
  • 54.Griffith OW, Meister A. Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci USA. 1985;82:4668–4672. doi: 10.1073/pnas.82.14.4668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Bellomo G, Vairetti M, Stivala L, Mirabelli F, Richelmi P, Orrenius S. Demonstration of nuclear compartm entalization of glutathione in hepatocytes. Proc Natl Acad Sci USA. 1992;89:4412–4416. doi: 10.1073/pnas.89.10.4412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kosower NS, Kosower EM. The glutathione status of cells. Int Rev Cytol. 1978;54:109–160. doi: 10.1016/s0074-7696(08)60166-7. [DOI] [PubMed] [Google Scholar]
  • 57.Chatterjee S, Noack H, Possel H, Keilhoff G, Wolf G. Glutathione levels in primary glial cultures: monochlorobimane provides evidence of cell type-specific distribution. Glia. 1999;27:152–161. doi: 10.1002/(SICI)1098-1136(199908)27:2<152::AID-GLIA5>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  • 58.Wahllander A, Soboll S, Sies H, Linke I, Muller M. Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-S-transferases. FEBS Lett. 1979;97:138–140. doi: 10.1016/0014-5793(79)80069-1. [DOI] [PubMed] [Google Scholar]
  • 59.Soboll S, Grundel S, Harris J, Kolb-Bachofen V, Ketterer B, Sies H. The content of glutathione and glutathione S-transferases and the glutathione peroxidase activity in rat liver nuclei determined by a non-aqueous technique of cell fractionation. Biochem J. 1995;311:889–894. doi: 10.1042/bj3110889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Wu MM, Grabe M, Adams S, Tsien RY, Moore HP, Machen TE. Mechanisms of pH regulation in the regulated secretory pathway. J Biol Chem. 2001;276:33027–33035. doi: 10.1074/jbc.M103917200. [DOI] [PubMed] [Google Scholar]
  • 61.Cohen JS, Motiei M, Carmi S, Shiperto D, Yefet O, Ringel I. Determination of intracellular pH and compartmentation using diffusion-weighted NMR spectroscopy with pH-sensitive indicators. Magn Reson Med. 2004;51:900–903. doi: 10.1002/mrm.20034. [DOI] [PubMed] [Google Scholar]
  • 62.Carraro S, Doherty J, Zaman K, et al. S-nitrosothiols regulate cell-surface pH buffering by airway epithelial cells during the human immune response to rhinovirus. Am J Physiol Lung Cell Mol Physiol. 2006;290:L827–L832. doi: 10.1152/ajplung.00406.2005. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES