Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 Aug 4;8(3):E501–E507. doi: 10.1208/aapsj080359

Effects of protein aggregates: An immunologic perspective

Amy S Rosenberg 1,
PMCID: PMC2761057  PMID: 17025268

Abstract

The capacity of protein aggregates to enhance immune responses to the monomeric form of the protein has been known for over a half-century. Despite the clear connection between protein aggregates and antibody mediated adverse events in treatment with early therapeutic protein products such as intravenous immune globulin (IVIG) and human growth hormone, surprisingly little is known about the nature of the aggregate species responsible for such effects. This review focuses on a framework for understanding how aggregate species potentially interact with the immune system to enhance immune responses, garnered from basic immunologic research. Thus, protein antigens presented in a highly arrayed structure, such as might be found in large nondenatured aggregate species, are highly potent in inducing antibody responses even in the absence of T-cell help. Their potency may relate to the ability of multivalent protein species to extensively cross-link B-cell receptor, which (1) activates B cells via Bt kinases to proliferate, and (2) targets protein to class II major histocompatability complex (MHC)-loading compartments, efficiently eliciting T-cell help for antibody responses. The review further focuses on protein aggregates as they affect an immunogenicity risk assessment, the use of animal models and studies in uncovering effects of protein aggregates, and changes in product manufacture and packaging that may affect generation of protein aggregates.

Keywords: aggregates, container closure system, immunogenicity, neutralizing antibody, tolerance

Full Text

The Full Text of this article is available as a PDF (169.7 KB).

References

  • 1.Dintzis R, Okajima M, Middleton M, Greene G, Dintzis H. The immunogenicity of soluble haptenated polymers is determined by molecular mass and hapten valence. J Immunol. 1989;143:1239–1244. [PubMed] [Google Scholar]
  • 2.Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev. 2000;176:154–170. doi: 10.1034/j.1600-065X.2000.00607.x. [DOI] [PubMed] [Google Scholar]
  • 3.Bachmann M, Zinkernagel R. Neutralizing antiviral B-cell responses. Annu Rev Immunol. 1997;15:235–270. doi: 10.1146/annurev.immunol.15.1.235. [DOI] [PubMed] [Google Scholar]
  • 4.Fluckiger AC, Li Z, Kato RM, et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 1998;17:1973–1985. doi: 10.1093/emboj/17.7.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Ito H-O, Nakashima T, So T, Hirata M, Inoue M. Immunodominance of conformation-dependent B-cell epitopes of protein antigens. Biochem Biophys Res Commun. 2003;308:770–776. doi: 10.1016/S0006-291X(03)01466-9. [DOI] [PubMed] [Google Scholar]
  • 6.Nath A, Hall E, Tuzova M, et al. Autoantibodies to Amyloid β-peptide (Aβ) are increased in Alzheimer’s disease patients and Aβ antibodies can enhance Aβ neurotoxicity. Neuromolecular Med. 2003;3:29–39. doi: 10.1385/NMM:3:1:29. [DOI] [PubMed] [Google Scholar]
  • 7.O’Nuallain B, Wetzel R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci USA. 2002;99:1485–1490. doi: 10.1073/pnas.022662599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Casadevall N, Nataf J, Viron B, et al. Pure red cell aplasia and anti-erythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346:469–475. doi: 10.1056/NEJMoa011931. [DOI] [PubMed] [Google Scholar]
  • 9.Li J, Yang C, Xia Y, et al. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood. 2001;98:3241–3248. doi: 10.1182/blood.V98.12.3241. [DOI] [PubMed] [Google Scholar]
  • 10.Chackerian B, Lenz P, Lowy D, Schiller JT. Determinants of autoantibody induction by conjugated papillomavirus-like particles. J Immunol. 2002;169:6120–6126. doi: 10.4049/jimmunol.169.11.6120. [DOI] [PubMed] [Google Scholar]
  • 11.Cheng P, Steele C, Gu L, Song W, Pierce S. MHC class II antigen processing in B cells: accelerated intracellular targeting of antigens. J Immunol. 1999;162:7171–7180. [PubMed] [Google Scholar]
  • 12.Frei P, Benacerraf B, Thorbecke GJ. Phagocytosis of the antigen, a crucial step in the induction of the primary response. Proc Natl Acad Sci USA. 1965;53:20–23. doi: 10.1073/pnas.53.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Martin F, Oliver A, Kearney J. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14:617–629. doi: 10.1016/S1074-7613(01)00129-7. [DOI] [PubMed] [Google Scholar]
  • 14.Weigle WO. Analysis of autoimmunity through experimental models of thyroiditis and allergic encephalomyelitis. Adv Immunol. 1980;30:159–273. doi: 10.1016/s0065-2776(08)60196-0. [DOI] [PubMed] [Google Scholar]
  • 15.Goodnow CC. Transgenic mice and analysis of B-cell tolerance. Annu Rev Immunol. 1992;10:489–518. doi: 10.1146/annurev.iy.10.040192.002421. [DOI] [PubMed] [Google Scholar]
  • 16.Kyewski B, Derbinski J. Self-representation in the thymus: an extended view. Nat Rev Immunol. 2004;4:688–698. doi: 10.1038/nri1436. [DOI] [PubMed] [Google Scholar]
  • 17.Aalberse R, Platts-Mills T. How do we avoid developing allergy: modifications of the Th2 response from a B-cell perspective. J Allergy Clin Immunol. 2004;113:983–986. doi: 10.1016/j.jaci.2004.02.046. [DOI] [PubMed] [Google Scholar]
  • 18.Spiegelberg H, Horner A, Takabayashi K, Raz E. Allergen immunostimulatory oligodeoxynucleotide conjugate: a novel allergoid for immunotherapy. Curr Opin Allergy Clin Immunol. 2002;2:547–551. doi: 10.1097/00130832-200212000-00012. [DOI] [PubMed] [Google Scholar]
  • 19.Cleland J, Powell M, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst. 1993;10:307–377. [PubMed] [Google Scholar]
  • 20.Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185:129–188. doi: 10.1016/S0378-5173(99)00152-0. [DOI] [PubMed] [Google Scholar]
  • 21.Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93:1390–1402. doi: 10.1002/jps.20079. [DOI] [PubMed] [Google Scholar]
  • 22.Hermeling S, Schellekens H, Crommelin DJ, Jiskoot W. Micelle-associated protein in epoetin formulations: a risk factor for immunogenicity? Pharm Res. 2003;20:1903–1907. doi: 10.1023/B:PHAM.0000008034.61317.02. [DOI] [PubMed] [Google Scholar]
  • 23.Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348:601–608. doi: 10.1056/NEJMoa020888. [DOI] [PubMed] [Google Scholar]
  • 24.Ring J, Stephan W, Brendel W. Anaphylactoid reactions to infusions of plasma protein and human serum albumin. Clin Allergy. 1979;9:89–97. doi: 10.1111/j.1365-2222.1979.tb01527.x. [DOI] [PubMed] [Google Scholar]
  • 25.Dresser DW. Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen. Immunology. 1962;5:378–388. [PMC free article] [PubMed] [Google Scholar]
  • 26.Gamble CN. The role of soluble aggregates in the primary immune response of mice to human gamma globulin. Int Arch Allergy Appl Immunol. 1966;30:446–455. doi: 10.1159/000229829. [DOI] [PubMed] [Google Scholar]
  • 27.Getahun A, Heyman B. How antibodies act as natural adjuvants. Immunol Lett. 2006;104:38–45. doi: 10.1016/j.imlet.2005.11.005. [DOI] [PubMed] [Google Scholar]
  • 28.Braun A, Kwee L, Labow MA, Alsenz J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-alpha) in normal and transgenic mice. Pharm Res. 1997;14:1472–1478. doi: 10.1023/A:1012193326789. [DOI] [PubMed] [Google Scholar]
  • 29.Barandun S, Kistler P, Jeunet F, Isliker H. Intravenous administration of human γ-globulin. Vox Sang. 1962;7:157–174. doi: 10.1111/j.1423-0410.1962.tb03240.x. [DOI] [PubMed] [Google Scholar]
  • 30.Ellis E, Henney C. Adverse reactions following administration of human gamma globulin. J Allergy. 1969;43:45–54. doi: 10.1016/0021-8707(69)90019-7. [DOI] [PubMed] [Google Scholar]
  • 31.Moore W, Leppert P. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J Clin Endocrinol Metab. 1980;51:691–697. doi: 10.1210/jcem-51-4-691. [DOI] [PubMed] [Google Scholar]
  • 32.Staff PDR, editor. Proleukin. 58th ed. Montvale, NJ: Thomson Health care; 2004. pp. 1163–1167. [Google Scholar]
  • 33.Prummer O. Treatment-induced antibodies to interleukin 2. Biotherapy. 1997;10:15–24. doi: 10.1007/BF02678213. [DOI] [PubMed] [Google Scholar]
  • 34.Ishiguro A, Nakahata T, Matsubara K, et al. Age-related changes in thrombopoietin in children: reference interval for serum thrombopoietin levels. Br J Haematol. 1999;106:884–888. doi: 10.1046/j.1365-2141.1999.01641.x. [DOI] [PubMed] [Google Scholar]
  • 35.Novotny J, Handschumacher M, Haber E, et al. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains) Proc Natl Acad Sci USA. 1986;83:226–230. doi: 10.1073/pnas.83.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Li P, Azizul H, Blum J. Role of disulfide bonds in regulating antigen processing and epitope selection. J Immunol. 2002;169:2444–2450. doi: 10.4049/jimmunol.169.5.2444. [DOI] [PubMed] [Google Scholar]
  • 37.Alliance Protein Laboratories Web site. Summary of characterization methods offered. Available at: http://www.ap-lab.com/characterization_methods.htm. Accessed July 6, 2006.
  • 38.Liu J, Shire SJ. Analytical ultracentrifugation in the pharmaceutical industry. J Pharm Sci. 1999;88:1237–1241. doi: 10.1021/js9901458. [DOI] [PubMed] [Google Scholar]
  • 39.Wyatt Technology corporation Web site. Theory. Available at: http://www.wyatt.com/theory/index.cfin. Accessed July 6, 2006.
  • 40.Koppaka V, Murray P, Axelsen P. Early synergy between Abeta 42 and oxidatively damaged membranes in promoting amyloid fibril formation by Abeta40. J Biol Chem. 2003;278:36277–36284. doi: 10.1074/jbc.M301334200. [DOI] [PubMed] [Google Scholar]
  • 41.Levin S. Field flow fractionation in biomedical analysis. Biomed Chromatogr. 1991;5:133–137. doi: 10.1002/bmc.1130050308. [DOI] [PubMed] [Google Scholar]
  • 42.Fraunhofer W, Winter G, Coester C. Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems. Anal Chem. 2004;76:1909–1920. doi: 10.1021/ac0353031. [DOI] [PubMed] [Google Scholar]
  • 43.Boven K, Stryker S, Knight J, et al. The increased incidence of pure red cell aplasia with an Eprex formulation in uncoated rubber stopper syringes. Kidney Int. 2005;67:2346–2353. doi: 10.1111/j.1523-1755.2005.00340.x. [DOI] [PubMed] [Google Scholar]
  • 44.Peerlinck K, Arnout J, Di Giambattista M, et al. Factor VIII inhibitors in previously treated hemophilia A patients with a double virus inactivated plasma derived factor VIII concentrate. Thromb Haemost. 1997;77:80–86. [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES