Abstract
Positron emission tomography (PET) permits imaging of the regional biodistribution and pharmacokinetics of compounds labeled with short-lived positron-emitting isotopes. It has enabled evaluation of neurochemical systems in the living human brain, including effects of toxic substances. MicroPET devices allos studies of the rat brain with a spatial resolution of ∼2 mm. This is much poorer resolution than obtained using ex vivo autoradiography. However, animals need not be euthanized before imaging, so repeat studies are possible. This in principle allows the effects of toxic insults to be followed over the lifetime of an individual animal. We used microPET to evaluate brain metabolic effects of irradiation with high-energy heavy ions (HZE radiation), a component of the space radiation environment, on regional glucose metabolism. A significant fraction of neurons would be traversed by these densely ionizing particles during a Mars mission, and there is a need to estimate human neurological risks of prolonged voyages beyond the geomagnetosphere. Rats were irradiated with56Fe (600 MeV/n) ions at doses up to 240 cGy. At 9 months post-irradiation we did not detect alterations in regional accumulation of the glucose analog [18F]2-deoxy-2-fluoro-D-glucose. This may indicate that damage to the brain from HZE particles is less severe than feared. However, because radiation-induced alterations in some behaviors have been documented, it may reflect insensitivity of baseline cerebral glucose metabolism to HZE radiation. These studies will facilitate design of future studies of chronic, long-term exposure to both therapeutic and abused drugs using microPET.
Keywords: MicroPET, FDG, neurotoxicity, radiation, brain
Full Text
The Full Text of this article is available as a PDF (413.4 KB).
References
- 1.Abou-Donia MB. Organophosphorus ester-induced chronic neurotoxicity. Arch Environ Health. 2003;58:484–497. doi: 10.3200/AEOH.58.8.484-497. [DOI] [PubMed] [Google Scholar]
- 2.Casey DE. Pathophysiology of antipsychotic drug-induced movement disorders. J Clin Psychiatry. 2004;65:25–28. [PubMed] [Google Scholar]
- 3.Bates ME, Bowden SC, Barry D. Neurocognitive impairment associated with alcohol use disorders: implications for treatment. Exp Clin Psychopharmacol. 2002;10:193–212. doi: 10.1037/1064-1297.10.3.193. [DOI] [PubMed] [Google Scholar]
- 4.Volkow ND, Mullani N, Gould KL, Adler S, Krajewski K. Cerebral blood flow in chronic cocaine users: a study with positron emission tomography. Br J Psychiatry. 1988;152:641–648. doi: 10.1192/bjp.152.5.641. [DOI] [PubMed] [Google Scholar]
- 5.Filley CM, Halliday W, Kleinschmidt-DeMasters BK. The effects of toluene on the central nervous system. J Neuropathol Exp Neurol. 2004;63:1–12. doi: 10.1093/jnen/63.1.1. [DOI] [PubMed] [Google Scholar]
- 6.Phelps ME, Mazziotta JC. Positron emission tomography: human brain function and biochemistry. Science. 1985;228:799–809. doi: 10.1126/science.2860723. [DOI] [PubMed] [Google Scholar]
- 7.Reivich M, Kuhl D, Wolf A, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979;44:127–137. doi: 10.1161/01.res.44.1.127. [DOI] [PubMed] [Google Scholar]
- 8.Volkow ND, Fowler JS, Gatley SJ, et al. PET evaluation of the dopamine system of the human brain. J Nucl Med. 1996;37:1242–1256. [PubMed] [Google Scholar]
- 9.Volkow ND, Ding YS, Fowler JS, Gatley SJ. Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer’s dementia. Biol. Psychiatry. 2001;49:211–220. doi: 10.1016/S0006-3223(00)01112-4. [DOI] [PubMed] [Google Scholar]
- 10.Brooks DJ. Neuroimaging in Parkinson’s disease. NeuroRx. 2004;1:243–254. doi: 10.1602/neurorx.1.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Kircher TT, Thienel R. Functional brain imaging of symptoms and cognition in schizophrenia. Prog Brain Res. 2005;150:299–308. doi: 10.1016/S0079-6123(05)50022-0. [DOI] [PubMed] [Google Scholar]
- 12.Smith GS, Koppel J, Goldberg S. Applications of neuroreceptor imaging to psychiatry research. Psychopharmacol Bull. 2003;37:26–65. [PubMed] [Google Scholar]
- 13.Gatley SJ, Volkow ND, Wang GJ, et al. PET imaging in clinical drug abuse research. Curr Pharm Des. 2005;11:3203–3219. doi: 10.2174/138161205774424717. [DOI] [PubMed] [Google Scholar]
- 14.Kumar R, Nadig MR, Chauhan A. Positron emission tomography: clinical applications in oncology. Part 1. Expert Rev Anticancer Ther. 2005;5:1079–1094. doi: 10.1586/14737140.5.6.1079. [DOI] [PubMed] [Google Scholar]
- 15.Alexoff DL, Vaska P, Marsteller D, et al. Reproducibility of 11C-raclopride binding in the rat brain measured with the microPET R4: effects of scatter correction and tracer specific activity. J Nucl Med. 2003;44:815–822. [PubMed] [Google Scholar]
- 16.Knoess C, Siegel S, Smith A, et al. Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med Mol Imaging. 2003;30:737–747. doi: 10.1007/s00259-002-1052-6. [DOI] [PubMed] [Google Scholar]
- 17.Fahey FH, Gage HD, Buchheimer N, et al. Evaluation of the quantitative capability of a high-resolution positron emission tomography scanner for small animal imaging. J Comput Assist Tomogr. 2004;28:842–848. doi: 10.1097/00004728-200411000-00020. [DOI] [PubMed] [Google Scholar]
- 18.Brownell AL, Chen YI, Yu M, et al. 3-Nitropropionic acid-induced neurotoxicity-assessed by ultra high resolution positron emission tomography with comparison to magnetic resonance spectroscopy. J Neurochem. 2004;89:1206–1214. doi: 10.1111/j.1471-4159.2004.02408.x. [DOI] [PubMed] [Google Scholar]
- 19.Curtis HJ. The biological effects of heavy cosmic ray particles. Life Sci Space Res. 1963;1:39–47. [PubMed] [Google Scholar]
- 20.Joseph JA, Hunt WA, Rabin BM, Dalton TK. Possible “accelerated striatal aging” induced by 56Fe heavy-particle irradiation: implications for manned space flights. Radiat Res. 1992;130:88–93. doi: 10.2307/3578484. [DOI] [PubMed] [Google Scholar]
- 21.Curtis SB, Vazquez ME, Wilson JW, Atwell W, Kim M, Capala J. Cosmic ray hit frequencies in critical sites in the central nervous system. Adv Space Res. 1998;22:197–207. doi: 10.1016/S0273-1177(98)80011-2. [DOI] [PubMed] [Google Scholar]
- 22.Hunt WA, Dalton TK, Joseph JA, Rabin BM. Reduction of 3-methoxytyramine concentrations in the caudate nucleus of rats after exposure to high-energy iron particles: evidence for deficits in dopaminergic neurons. Radiat Res. 1990;121:169–174. doi: 10.2307/3577500. [DOI] [PubMed] [Google Scholar]
- 23.Cox AB, Kraft LM. Quantitation of ehavy ion damage to the mammalian brain: some preliminary findings. Adv Space Res. 1984;4:247–250. doi: 10.1016/0273-1177(84)90248-5. [DOI] [PubMed] [Google Scholar]
- 24.Kraft LM, Kelly MA, Johnson JE, et al. Effects of high-LET neon (20Ne) particle radiation on the brain, eyes and other head structures of the pocket mouse: a histological study. Int J Radiat Biol Relat Stud Phys Chem Med. 1979;35:33–61. doi: 10.1080/09553007914550041. [DOI] [PubMed] [Google Scholar]
- 25.Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. Radiat Res. 2001;156:460–466. doi: 10.1667/0033-7587(2001)156[0460:SRACIA]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
- 26.Cucinotta FA, Schimmerling W, Wilson JW, Peterson LE, Saganti PB, Dicello JF. Uncertainties in estimates of the risks of late effects from space radiation. Adv Space Res. 2004;34:1383–1389. doi: 10.1016/j.asr.2003.10.053. [DOI] [PubMed] [Google Scholar]
- 27.Blakely EA. Biological effects of cosmic radiation: deterministic and stochastic. Health Phys. 2000;79:495–506. doi: 10.1097/00004032-200011000-00006. [DOI] [PubMed] [Google Scholar]
- 28.Aubele T, Kristiansen R, Rice O, Gatley SJ, Neil, JC. Long-term Effects of Whole-Brain Irradiation on Auditory Discrimination [abstract].Soc Neurosci. 2005; Nov 15:-Abstract 616.19.
- 29.Neill J, Rice O, Gatley S. HZE irradiation impairs audition like seizures but not aging. Paper presented at: 16th Annual, NASA space radiation health investigators’ workshop, May 15, 2005; Port Jefferson, NY. Available at: http://www.dsls.usra.edu/meetings/radiation2005/ pdf/1045neill.pdf.Accessed July 27, 2006.
- 30.Vargas A, Rice O, Vasquez M, Gatley S, Robinson J. Rats Exposed to HZE Radiation Exhibit Selective Deficits in Acquisition of Light-Dark Discrimination Task [abstract].Soc Neurosci. 2005;Nov 16:-Abstract 883.10.
- 31.Rice O, Robinson J, Saintvictor S, Vazquez M, Gatley S, Micropet studies of brain damage by heavy ion particles. Paper presented at: 16th Annual NASA space radiation health investigators’ workshop, May 15, 2005; Port Jefferson, NY. Available at: http://www.dsls.usra.edu/ meetings/radiation2005/pdf/1054rice.pdf.Accessed July 27, 2006.
- 32.Rabin BM, Joseph JA, Shukitt-Hale B. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle. Adv Space Res. 2003;31:127–133. doi: 10.1016/S0273-1177(02)00879-7. [DOI] [PubMed] [Google Scholar]
- 33.Rabin BM, Joseph JA, Shukitt-Hale B. A longitudinal study of operant responding in rats irradiated when 2 months old. Radiat Res. 2005;164:552–555. doi: 10.1667/RR3349.1. [DOI] [PubMed] [Google Scholar]
- 34.Rabin BM, Joseph JA, Shukitt-Hale B. Effects of age and diet on the heavy particle-induced disruption of operant responding produced by a ground-based model for exposure to cosmic rays. Brain Res. 2005;1036:122–129. doi: 10.1016/j.brainres.2004.12.041. [DOI] [PubMed] [Google Scholar]
- 35.Shukitt-Hale B, Casadesus G, Cantuti-Castelvetri I, Rabin BM, Joseph JA. Cognitive deficits induced by 56Fe radiation exposure. Adv Space Res. 2003;31:119–126. doi: 10.1016/S0273-1177(02)00878-5. [DOI] [PubMed] [Google Scholar]
- 36.Shukitt-Hale B, Casadesus G, McEwen JJ, Rabin BM, Joseph JA. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation. Radiat Res. 2000;154:28–33. doi: 10.1667/0033-7587(2000)154[0028:SLAMDI]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
- 37.Sokoloff L. Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab. 1981;1:7–36. doi: 10.1038/jcbfm.1981.4. [DOI] [PubMed] [Google Scholar]
- 38.Dijkstra JB, Jolles J. Postoperative cognitive dysfunction versus complaints: a discrepancy in long-term findings. Neuropsychol Rev. 2002;12:1–14. doi: 10.1023/A:1015404122161. [DOI] [PubMed] [Google Scholar]
- 39.Culley DJ, Baxter MG, Yukhananov R, Crosby G. Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology. 2004;100:309–314. doi: 10.1097/00000542-200402000-00020. [DOI] [PubMed] [Google Scholar]
- 40.Yoneoka Y, Satoh M, Akiyama K, Sano K, Fujii Y, Tanaka R. An experimental study of radiation-induced cognitive dysfunction in an adult rat model. Br J Radiol. 1999;72:1196–1201. doi: 10.1259/bjr.72.864.10703477. [DOI] [PubMed] [Google Scholar]
- 41.Barbarich-Marsteller NC, Marsteller DA, Alexoff DL, Fowler JS, Dewey SL. MicroPET imaging in an animal model of anorexia nervosa. Synapse. 2005;57:85–90. doi: 10.1002/syn.20160. [DOI] [PubMed] [Google Scholar]
- 42.Thanos PK, Taintor NB, Rivera SN, et al. DRD2 gene transfer into the nucleus accumbens core of the alcohol preferring and nonpreferring rats attenuates alcohol drinking. Alcohol Clin Exp Res. 2004;28:720–728. doi: 10.1097/01.ALC.0000125270.30501.08. [DOI] [PubMed] [Google Scholar]
- 43.Rodriguez JA, Lu JQ, Velasco I. Functional Effects of es Cell-derived Dopamine Neurons in an Animal Model of Parkinson’s Disease. Program No. 381.15.2004 Abstract. Washington, DC: Society for Neuroscience; 2004. [Google Scholar]
- 44.Michaelides ME, Thanos PK, Rivera SN, Wang G-J, Volkow ND. Age-related Changes of Striatal Dopamine D2 receptor (D2R) Binding in Obese (fa/fa) and lean (le) Zucker Rats Revealed by Positron Emission Tomography (PET). Program No. 451.17. Washington, DC: Society for Neuroscience; 2005. [Google Scholar]
- 45.Inaji M, Okauchi T, Ando K, et al. Correlation between quantitative imaging and behavior in unilaterally 6-OHDA-lesioned rats. Brain Res. 2005;1064:136–145. doi: 10.1016/j.brainres.2005.09.055. [DOI] [PubMed] [Google Scholar]
- 46.Ishida Y, Kawai K, Magata Y, et al. Alteration of striatal [11C]raclopride and 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine uptake precedes development of methamphetamine-induced rotation following unilateral 6-hydroxydopamine lesions of medial forebrain bundle in rats. Neurosci Lett. 2005;389:30–34. doi: 10.1016/j.neulet.2005.06.060. [DOI] [PubMed] [Google Scholar]
- 47.Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL. Serial microPET measures of the metabolic reaction to a microdialysis probe implant.J Neurosci Methods. 2006; In press. [DOI] [PubMed]