Skip to main content
AAPS PharmSci logoLink to AAPS PharmSci
. 1999 Aug 21;1(3):21–31. doi: 10.1208/ps010310

Activity and kinetics of dissociation and transfer of amphotericin B from a novel delivery form

Bradley Baas 1, katie Kindt 1, Angela Scott 1, Jessica Scott 1, Peter Mikulecky 1, Scott C Hartsel 1,
PMCID: PMC2761124  PMID: 11741206

Abstract

Recently it has been demonstrated that moderate heat treatment of Amphotericin B/deoxycholate solutions (HAmB-DOC) leads to a therapeutically interesting supramolecular rearrangement that can be observed by significant changes in light scattering, CD, and absorbance. In this study, we continue the investigation of the physical properties of this new form by evaluating the activity and kinetics of dissociation and dispersion of HAmB-DOC and AmB-DOC in saline, serum, and in model mammalian or fungal lipid biomimetic membrane vesicles. Stopped-flow spectrophotometry combined with singular value decomposition (SVD) and global analysis were used to resolve the components of this process. The dissociation kinetics for both states are complex, requiring multiexponential fits, vet in most cases SVD indicates only two significant changing species representing the monomer and the aggregate. The kinetic mechanism could involve dissociation of monomers from coexisting spectroscopically similar but structurally distinct aggregates or sequential rearrangements in supramolecular structure of aggregates. Rate constants and amplitudes of dissociation from aggregates to monomer in buffer, whole serum, 10% cholesterol, and ergosterol membrane vesicles are generally greater for AmB-DOC, demonstrating its greater kinetic instability. In addition, at comparable low concentrations, HAmB-DOC and AmB-DOC are nearly equally active at promoting cation selective permeability in ergosterol-containing membranes; however, HAmB-DOC is much less active against mammalian mimetic cholesterol-containing vesicles, despite a higher level of self-association, supporting previous observations that there exists a specific “toxic aggregate” structure.

References

  • 1.Hartsel S., Bolard J. Amphotericin B: new life for an old drug. Trends Pharmacol Sci. 1996;17:445–449. doi: 10.1016/S0165-6147(96)01012-7. [DOI] [PubMed] [Google Scholar]
  • 2.Hiemenz J.W., Walsh T.J. Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis. 1996;22:133–144. doi: 10.1093/clinids/22.supplement_2.s133. [DOI] [PubMed] [Google Scholar]
  • 3.Brajburg J., Bolard J. Carrier effects on biological activity of amphotericin B. Clin Microbiol Rev. 1996;9:512–531. doi: 10.1128/cmr.9.4.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Bolard J., Legrand P., Heitz F., Cybulska B. One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry. 1991;30:5707–5715. doi: 10.1021/bi00237a011. [DOI] [PubMed] [Google Scholar]
  • 5.Legrand P., Romero E.A., Cohen B.E., Bolard J. Effects of Aggregation and Solvent on the Toxicity of Amphotericin-B to Human Erythrocytes. Antimicrob Agents Chemother. 1992;36:2518–2522. doi: 10.1128/aac.36.11.2518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Lamy-Freund M.T., Ferreira V.F.N., Faljonialario A., Schreier S. Effect of Aggregation on the Kinetics of Autoxidation of the Polyene Antibiotic Amphotericin-B. J Pharm Sci. 1993;82:162–166. doi: 10.1002/jps.2600820209. [DOI] [PubMed] [Google Scholar]
  • 7.Lamy-Freund M.T., Ferreira V.F., Schreier S. Mechanism of mactivation of the polyene antibiotic amphotericin B. Evidence for radical formation in the process of autooxidation. J Antibiot (Tokyo) 1985;38:753–757. doi: 10.7164/antibiotics.38.753. [DOI] [PubMed] [Google Scholar]
  • 8.Gaboriau F., Cheron M., Leroy L., Bolard J. Physico-Chemical properties of the heat-induced ‘superaggregates’ of amphotericin B. Biophysical Chemistry. 1997;66:1–12. doi: 10.1016/S0301-4622(96)02241-7. [DOI] [PubMed] [Google Scholar]
  • 9.Gaboriau F., Cheron M., Petit C., Bolard J. Heat-induced superaggregation of amphotericin B reduces its in vitro toxicity: a new way to improve its therapeutic index. Antimicrob Agets Chemother. 1997;41:2345–2351. doi: 10.1128/aac.41.11.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Petit C., Yardley V., Gaboriau F., Bolard J., Croft S.L. Activity of a heat-induced reformulation of amphoteriein B deoxycholate (fungizone) against Leishmania donovani. Antimicrob Agents Chemother. 1999;43:390–392. doi: 10.1128/aac.43.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ruckwardt T., Scott A., Scott J., Mikulecky P., Hartsel S.C. Lipid and stress dependence of amphotericin B ion selective channels in sterol-free membranes. Biochim Biophys Acta. 1998;1372:283–288. doi: 10.1016/S0005-2736(98)00073-X. [DOI] [PubMed] [Google Scholar]
  • 12.Henry, E.R.a.H., J., Singular Value decomposition: Application to Analysis of Experimental Data, in Numerical Computer Methods, L.a.J. Brand, M. L., Editor. 1992, Academic Press, Inc.: p. 129–192.
  • 13.Fujii G., Chang J.E., Coley T., Steere B. The formation of amphotericin B ion channels in lipid bilayers. Biochemistry. 1997;36:4959–4968. doi: 10.1021/bi962894z. [DOI] [PubMed] [Google Scholar]
  • 14.Lamy-Freund M.T., Schreier S., Peitzsch R.M., Reed W.F. Characterization and time dependence of amphotericin B: deoxycholate aggregation by quasielastic light scattering. J Pharm Sci. 1991;80:262–2666. doi: 10.1002/jps.2600800314. [DOI] [PubMed] [Google Scholar]
  • 15.Hartsel S.C., Hatch C., Ayenew W. How Does Amphotericin B Work?: Studies on Model Systems. Journal of Liposome Research. 1993;3:377–408. doi: 10.3109/08982109309150727. [DOI] [Google Scholar]
  • 16.Legrand P., Cheron M., Leroy L., Bolard J. Release of amphotericin B from delivery systems and its action against fungal and mammalian cells. Journal of Drug Targeting. 1997;4:311–319. doi: 10.3109/10611869708995847. [DOI] [PubMed] [Google Scholar]
  • 17.Lamy-Freund M.T., Ferreira V.F., Schreier S. Polydispersity of aggregates formed by the polyene antibiotic amphotericin B and deoxycholate. A spin label study. Biochim Biophys Acta. 1989;981:207–212. doi: 10.1016/0005-2736(89)90030-8. [DOI] [PubMed] [Google Scholar]
  • 18.Barwicz J., Tancrede P. The effect of aggregation state of amphotericin-B on its interactions with cholesterol- or ergosterol-containing phosphatidylcholine monolayers. Chem Phys Lipids. 1997;85:145–155. doi: 10.1016/S0009-3084(96)02652-7. [DOI] [PubMed] [Google Scholar]
  • 19.Tancrede P., Barwicz J., Jutras S., Gruda I. The effect of surfactants on the aggregation state of Amphotericin B. Biochim Biophys Acta. 1990;1030:289–95. doi: 10.1016/0005-2736(90)90305-8. [DOI] [PubMed] [Google Scholar]
  • 20.Ceryak S., Bouscarel B., Fromm H. Comparative binding of bile acids to serum lipoproteins and albumin. J Lipid Res. 1993;34:1661–1674. [PubMed] [Google Scholar]
  • 21.Meyuhas D., Lichtenberg D. The effect of albumin on the state of aggregation and phase transformations in phosphatidylcholine-sodium cholate mixtures. Biochim Biophys Acta. 1995;1234:203–213. doi: 10.1016/0005-2736(94)00290-6. [DOI] [PubMed] [Google Scholar]
  • 22.Passing R., Schubert D. The binding of deoxycholic acid to band 3 protein from human erythrocyte membranes and to bovine serum albumin. Hoppe Seylers Z Physiol Chem. 1983;364:219–226. doi: 10.1515/bchm2.1983.364.1.219. [DOI] [PubMed] [Google Scholar]
  • 23.Romanini D., Farruggia B., Pico G. Absorption and fluorescence spectra of polyene antibiotics in the presence of human serum albumin. Biochem Mol Biol Int. 1998;44:595–603. doi: 10.1080/15216549800201632. [DOI] [PubMed] [Google Scholar]
  • 24.Ridente Y., Aubard J., Bolard J. Absence in amphotericin Bspiked human plasma of the free monomeric drug, as detected by SERS. FEBS Lett. 1999;446:283–286. doi: 10.1016/S0014-5793(99)00238-0. [DOI] [PubMed] [Google Scholar]
  • 25.Petit C., Yardley V., Gaboriau F., Bolard J., Croft S.L. Activity of a heat-induced reformulation of amphotericin B deoxycholate (fungizone) against Leishmania donovani. Antimicrob Agents Chemother. 1999;43:390–392. doi: 10.1128/aac.43.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Petit C., Cheron M., Joly V., Rodrigues J.M., Bolard J., Gaboriau F. In-vivo therapeutic efficacy, in experimental murine mycoses of a new formulation of deoxycholate-amphotericin B obtained by mild heating. J Antimicrob Chemother. 1998;42:779–785. doi: 10.1093/jac/42.6.779. [DOI] [PubMed] [Google Scholar]
  • 27.Cutaia M., Bullard S.R., Rudio K., Rounds S. Characteristics of Amphotericin-B Induced Endothelial Cell Injury. J Lab Clin Med. 1993;121:244–256. [PubMed] [Google Scholar]
  • 28.Brajtburg J., Elberg S., Bolard J., Kobayashi G. S., Levy R. A., Ostlund R. E., Schlessinger D., Medoff G. Interaction of plasma proteins and lipoproteins with amphotericin B. J Infect Dis. 1984;149:986–997. doi: 10.1093/infdis/149.6.986. [DOI] [PubMed] [Google Scholar]
  • 29.Chavanet P., Joly V., Rigand D., Bolard J., Carbon C., Yeni P. Influence of Diet on Experimental Toxicity of Amphotericin B Deoxycholate. Antimicrob Agents Chemother. 1994;38:963–968. doi: 10.1128/aac.38.5.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Vertut-Doi A., Ohnishi S.I., Bolard J. The endocytic process in CHO cells, a toxic pathway of the polyene antibiotic amphotericin B. Antimicrob Agents Chemother. 1994;38:2373–2379. doi: 10.1128/aac.38.10.2373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Wasan K.M., Morton R.E., Rosenblum M.G., Lopez-Berestein G. Decreased toxicity of liposomal amphotericin B due to association of amphotericin B with high-density lipoproteins: role of lipid transfer protein. J Pharm Sci. 1994;83:1006–1010. doi: 10.1002/jps.2600830716. [DOI] [PubMed] [Google Scholar]
  • 32.Wasan K.M., Lopezberestein G. The interaction of liposomal amphotericin B and serum lipoproteins within the biological milieu. J Drug Target. 1994;2:373–380. doi: 10.3109/10611869408996812. [DOI] [PubMed] [Google Scholar]
  • 33.Wasan K.M., Conklin J.S. Enhanced amphotericin B nephrotoxicity in intensive care patients with elevated levels of low-density lipoprotein cholesterol. Clin Infect Dis. 1997;24:78–80. doi: 10.1093/clinids/24.1.78. [DOI] [PubMed] [Google Scholar]

Articles from AAPS PharmSci are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES