Abstract
sn-1,2-Diacylglycerol (DAG) mass and translocation of protein kinase C alpha and beta to a membrane fraction increased approximately 7 min after insemination of Xenopus laevis eggs. The DAG mass increase of 48 pmol (from 62 to 110 pmol/cell) was greater than that for inositol 1,4,5-trisphosphate (IP3; an increase of approximately 170 fmol or approximately 280-fold smaller than the DAG increase), and DAG peaks approximately 5 min after IP3. Choline mass (a measure of phosphatidyl choline-specific phospholipase D) also peaked before DAG and the choline increase (134 pmol/cell) was greater than that of DAG. There was no detectable change in phosphocholine mass (a measure of phosphatidylcholine-specific phospholipase C). During first cleavage, DAG decreased, PKC translocation was low, and choline increased and peaked (whereas published work shows an increase in IP3 mass). Artificial elevation of intracellular calcium ([Ca2+]i) increased DAG levels but prevention of the [Ca2+]i increase after fertilization did not block DAG production. Thus, sperm stimulate production of DAG and choline through [Ca2+]i-independent and [Ca2+]i-dependent paths.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alonso T. S., Bonini de Romanelli I. C., Bazan N. G. Changes in triacylglycerol, diacylglycerol and free fatty acids after fertilization in developing toad embryos. Biochim Biophys Acta. 1986 Feb 28;875(3):465–472. doi: 10.1016/0005-2760(86)90066-4. [DOI] [PubMed] [Google Scholar]
- Arnold T. P., Standaert M. L., Hernandez H., Watson J., Mischak H., Kazanietz M. G., Zhao L., Cooper D. R., Farese R. V. Effects of insulin and phorbol esters on MARCKS (myristoylated alanine-rich C-kinase substrate) phosphorylation (and other parameters of protein kinase C activation) in rat adipocytes, rat soleus muscle and BC3H-1 myocytes. Biochem J. 1993 Oct 1;295(Pt 1):155–164. doi: 10.1042/bj2950155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bazzi M. D., Nelsestuen G. L. Properties of the protein kinase C-phorbol ester interaction. Biochemistry. 1989 Apr 18;28(8):3577–3585. doi: 10.1021/bi00434a064. [DOI] [PubMed] [Google Scholar]
- Bement W. M., Capco D. G. Activators of protein kinase C trigger cortical granule exocytosis, cortical contraction, and cleavage furrow formation in Xenopus laevis oocytes and eggs. J Cell Biol. 1989 Mar;108(3):885–892. doi: 10.1083/jcb.108.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bement W. M., Capco D. G. Analysis of inducible contractile rings suggests a role for protein kinase C in embryonic cytokinesis and wound healing. Cell Motil Cytoskeleton. 1991;20(2):145–157. doi: 10.1002/cm.970200207. [DOI] [PubMed] [Google Scholar]
- Bement W. M., Capco D. G. Parallel pathways of cell cycle control during Xenopus egg activation. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5172–5176. doi: 10.1073/pnas.88.12.5172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bement W. M., Capco D. G. Protein kinase C acts downstream of calcium at entry into the first mitotic interphase of Xenopus laevis. Cell Regul. 1990 Feb;1(3):315–326. doi: 10.1091/mbc.1.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bement W. M. Signal transduction by calcium and protein kinase C during egg activation. J Exp Zool. 1992 Oct 1;263(4):382–397. doi: 10.1002/jez.1402630406. [DOI] [PubMed] [Google Scholar]
- Busa W. B., Ferguson J. E., Joseph S. K., Williamson J. R., Nuccitelli R. Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores. J Cell Biol. 1985 Aug;101(2):677–682. doi: 10.1083/jcb.101.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Busa W. B., Nuccitelli R. An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis. J Cell Biol. 1985 Apr;100(4):1325–1329. doi: 10.1083/jcb.100.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen K. H., Peng Z. G., Lavu S., Kung H. F. Molecular cloning and sequence analysis of two distinct types of Xenopus laevis protein kinase C. Second Messengers Phosphoproteins. 1988;12(5-6):251–260. [PubMed] [Google Scholar]
- Ciapa B., Borg B., Whitaker M. Polyphosphoinositide metabolism during the fertilization wave in sea urchin eggs. Development. 1992 May;115(1):187–195. doi: 10.1242/dev.115.1.187. [DOI] [PubMed] [Google Scholar]
- Ciapa B., Crossley I., De Renzis G. Structural modifications induced by TPA (12-O-tetradecanoyl phorbol-13-acetate) in sea urchin eggs. Dev Biol. 1988 Jul;128(1):142–149. doi: 10.1016/0012-1606(88)90276-x. [DOI] [PubMed] [Google Scholar]
- Ciapa B., Pesando D., Wilding M., Whitaker M. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature. 1994 Apr 28;368(6474):875–878. doi: 10.1038/368875a0. [DOI] [PubMed] [Google Scholar]
- Ciapa B., Whitaker M. Two phases of inositol polyphosphate and diacylglycerol production at fertilisation. FEBS Lett. 1986 Jan 20;195(1-2):347–351. doi: 10.1016/0014-5793(86)80191-0. [DOI] [PubMed] [Google Scholar]
- Craven P. A., Davidson C. M., DeRubertis F. R. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes. 1990 Jun;39(6):667–674. doi: 10.2337/diab.39.6.667. [DOI] [PubMed] [Google Scholar]
- Eckberg W. R., Szuts E. Z. Diacylglycerol content of Chaetopterus oocytes during maturation and fertilization. Dev Biol. 1993 Oct;159(2):732–735. doi: 10.1006/dbio.1993.1278. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994 Apr 14;1212(1):26–42. doi: 10.1016/0005-2760(94)90186-4. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
- Grandin N., Charbonneau M. Intracellular pH and intracellular free calcium responses to protein kinase C activators and inhibitors in Xenopus eggs. Development. 1991 Jun;112(2):461–470. doi: 10.1242/dev.112.2.461. [DOI] [PubMed] [Google Scholar]
- Grandin N., Charbonneau M. The increase in intracellular pH associated with Xenopus egg activation is a Ca(2+)-dependent wave. J Cell Sci. 1992 Jan;101(Pt 1):55–67. doi: 10.1242/jcs.101.1.55. [DOI] [PubMed] [Google Scholar]
- Harrison R. A., Roldan E. R. Phosphoinositides and their products in the mammalian sperm acrosome reaction. J Reprod Fertil Suppl. 1990;42:51–67. [PubMed] [Google Scholar]
- Kamel L. C., Bailey J., Schoenbaum L., Kinsey W. Phosphatidylinositol metabolism during fertilization in the sea urchin egg. Lipids. 1985 Jun;20(6):350–356. doi: 10.1007/BF02534201. [DOI] [PubMed] [Google Scholar]
- Kennerly D. A. Quantitative analysis of water-soluble products of cell-associated phospholipase C- and phospholipase D-catalyzed hydrolysis of phosphatidylcholine. Methods Enzymol. 1991;197:191–197. doi: 10.1016/0076-6879(91)97145-o. [DOI] [PubMed] [Google Scholar]
- Khan N. A., Quemener V., Moulinoux J. P. Exogeneous diacylglycerols downregulate the activity of Na(+)-K+ pump in Xenopus laevis oocytes. Exp Cell Res. 1991 Jun;194(2):248–251. doi: 10.1016/0014-4827(91)90361-w. [DOI] [PubMed] [Google Scholar]
- Kline D. Calcium-dependent events at fertilization of the frog egg: injection of a calcium buffer blocks ion channel opening, exocytosis, and formation of pronuclei. Dev Biol. 1988 Apr;126(2):346–361. doi: 10.1016/0012-1606(88)90145-5. [DOI] [PubMed] [Google Scholar]
- Le Peuch C. j., Picard A., Dorée M. Parthenogenetic activation decreases the polyphosphoinositide content of frog eggs. FEBS Lett. 1985 Jul 22;187(1):61–64. doi: 10.1016/0014-5793(85)81214-x. [DOI] [PubMed] [Google Scholar]
- Niemierko A., Komar A. Action of phorbol myristate acetate (PMA) at fertilization of mouse oocytes in vitro. J Embryol Exp Morphol. 1985 Dec;90:171–177. [PubMed] [Google Scholar]
- Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
- Olds J. L., Favit A., Nelson T., Ascoli G., Gerstein A., Cameron M., Cameron L., Lester D. S., Rakow T., De Barry J. Imaging protein kinase C activation in living sea urchin eggs after fertilization. Dev Biol. 1995 Dec;172(2):675–682. doi: 10.1006/dbio.1995.8060. [DOI] [PubMed] [Google Scholar]
- Raffaniello R. D., Raufman J. P. Protein kinase C expression and translocation in dispersed chief cells from guinea-pig stomach. Biochim Biophys Acta. 1994 Dec 30;1224(3):551–558. doi: 10.1016/0167-4889(94)90293-3. [DOI] [PubMed] [Google Scholar]
- Sahara S., Sato K., Aoto M., Ohnishi T., Kaise H., Koide H., Ogita K., Fukami Y. Characterization of protein kinase C in Xenopus oocytes. Biochem Biophys Res Commun. 1992 Jan 15;182(1):105–114. doi: 10.1016/s0006-291x(05)80118-4. [DOI] [PubMed] [Google Scholar]
- Satterwhite L. L., Lohka M. J., Wilson K. L., Scherson T. Y., Cisek L. J., Corden J. L., Pollard T. D. Phosphorylation of myosin-II regulatory light chain by cyclin-p34cdc2: a mechanism for the timing of cytokinesis. J Cell Biol. 1992 Aug;118(3):595–605. doi: 10.1083/jcb.118.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shariff A., Luna E. J. Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes. Science. 1992 Apr 10;256(5054):245–247. doi: 10.1126/science.1373523. [DOI] [PubMed] [Google Scholar]
- Shea T. B. Technical report. An inexpensive densitometric analysis system using a Macintosh computer and a desktop scanner. Biotechniques. 1994 Jun;16(6):1126–1128. [PubMed] [Google Scholar]
- Shen S. S., Buck W. R. A synthetic peptide of the pseudosubstrate domain of protein kinase C blocks cytoplasmic alkalinization during activation of the sea urchin egg. Dev Biol. 1990 Aug;140(2):272–280. doi: 10.1016/0012-1606(90)90077-v. [DOI] [PubMed] [Google Scholar]
- Smith B. L., Mochly-Rosen D. Inhibition of protein kinase C function by injection of intracellular receptors for the enzyme. Biochem Biophys Res Commun. 1992 Nov 16;188(3):1235–1240. doi: 10.1016/0006-291x(92)91363-u. [DOI] [PubMed] [Google Scholar]
- Stith B. J., Espinoza R., Roberts D., Smart T. Sperm increase inositol 1,4,5-trisphosphate mass in Xenopus laevis eggs preinjected with calcium buffers or heparin. Dev Biol. 1994 Sep;165(1):206–215. doi: 10.1006/dbio.1994.1247. [DOI] [PubMed] [Google Scholar]
- Stith B. J., Goalstone M., Silva S., Jaynes C. Inositol 1,4,5-trisphosphate mass changes from fertilization through first cleavage in Xenopus laevis. Mol Biol Cell. 1993 Apr;4(4):435–443. doi: 10.1091/mbc.4.4.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stith B. J., Jaynes C., Goalstone M., Silva S. Insulin and progesterone increase 32PO4-labeling of phospholipids and inositol 1,4,5-trisphosphate mass in Xenopus oocytes. Cell Calcium. 1992 May;13(5):341–352. doi: 10.1016/0143-4160(92)90069-5. [DOI] [PubMed] [Google Scholar]
- Stith B. J., Kirkwood A. J., Wohnlich E. Insulin-like growth factor 1, insulin, and progesterone induce early and late increases in Xenopus oocyte sn-1,2-diacylglycerol levels before meiotic cell division. J Cell Physiol. 1991 Nov;149(2):252–259. doi: 10.1002/jcp.1041490211. [DOI] [PubMed] [Google Scholar]
- Swann K., Igusa Y., Miyazaki S. Evidence for an inhibitory effect of protein kinase C on G-protein-mediated repetitive calcium transients in hamster eggs. EMBO J. 1989 Dec 1;8(12):3711–3718. doi: 10.1002/j.1460-2075.1989.tb08546.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner P. R., Sheetz M. P., Jaffe L. A. Fertilization increases the polyphosphoinositide content of sea urchin eggs. Nature. 1984 Aug 2;310(5976):414–415. doi: 10.1038/310414a0. [DOI] [PubMed] [Google Scholar]
- Vasilets L. A., Schmalzing G., Mädefessel K., Haase W., Schwarz W. Activation of protein kinase C by phorbol ester induces downregulation of the Na+/K(+)-ATPase in oocytes of Xenopus laevis. J Membr Biol. 1990 Nov;118(2):131–142. doi: 10.1007/BF01868470. [DOI] [PubMed] [Google Scholar]
- Whitaker M. How calcium may cause exocytosis in sea urchin eggs. Biosci Rep. 1987 May;7(5):383–397. doi: 10.1007/BF01362502. [DOI] [PubMed] [Google Scholar]

