Skip to main content
Molecular Biology of the Cell logoLink to Molecular Biology of the Cell
. 1997 May;8(5):923–934. doi: 10.1091/mbc.8.5.923

A folded protein can be transported across the chloroplast envelope and thylakoid membranes.

S A Clark 1, S M Theg 1
PMCID: PMC276138  PMID: 9168475

Abstract

Many thylakoid lumenal proteins are nuclear encoded, cytosolically synthesized, and reach their functional location after posttranslational targeting across two chloroplast envelope membranes and the thylakoid membrane via proteinaceous transport systems. To study whether these transmembrane transport machineries can translocate folded structures, we overexpressed the 17-kDa subunit of the oxygen-evolving complex of photosystem II (prOE17) that had been modified to contain a unique C-terminal cysteine. This allowed us to chemically link a terminal 6.5-kDa bovine pancreatic trypsin inhibitor (BPTI) moiety to prOE17 to create the chimeric protein prOE17-BPTI. Redox reagents and an irreversible sulfhydryl-specific cross-linker, bis-maleimidohexane, were used to manipulate the structure of BPTI. Import of prOE17-BPTI into isolated chloroplasts and thylakoids demonstrates that the small tightly folded BPTI domain is carried across both the chloroplast envelopes and the delta pH-dependent transmembrane transporter of the thylakoid membrane when linked to the correctly targeted OE17 precursor. Transport proceeded even when the BPTI moiety was internally cross-linked into a protease-resistant form. These data indicate that unfolding is not a ubiquitous requirement for protein translocation and that at least some domains of targeted proteins can maintain a nonlinear structure during their translocation into and within chloroplasts.

Full text

PDF
923

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. America T., Hageman J., Guéra A., Rook F., Archer K., Keegstra K., Weisbeek P. Methotrexate does not block import of a DHFR fusion protein into chloroplasts. Plant Mol Biol. 1994 Jan;24(2):283–294. doi: 10.1007/BF00020168. [DOI] [PubMed] [Google Scholar]
  2. Cline K., Ettinger W. F., Theg S. M. Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J Biol Chem. 1992 Feb 5;267(4):2688–2696. [PubMed] [Google Scholar]
  3. Cline K., Henry R., Li C., Yuan J. Multiple pathways for protein transport into or across the thylakoid membrane. EMBO J. 1993 Nov;12(11):4105–4114. doi: 10.1002/j.1460-2075.1993.tb06094.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Creighton A. M., Hulford A., Mant A., Robinson D., Robinson C. A monomeric, tightly folded stromal intermediate on the delta pH-dependent thylakoidal protein transport pathway. J Biol Chem. 1995 Jan 27;270(4):1663–1669. doi: 10.1074/jbc.270.4.1663. [DOI] [PubMed] [Google Scholar]
  5. Creighton T. E. Counting integral numbers of amino acid residues per polypeptide chain. Nature. 1980 Apr 3;284(5755):487–489. doi: 10.1038/284487a0. [DOI] [PubMed] [Google Scholar]
  6. Creighton T. E. Effects of urea and guanidine-HCl on the folding and unfolding of pancreatic trypsin inhibitor. J Mol Biol. 1977 Jun 25;113(2):313–328. doi: 10.1016/0022-2836(77)90144-9. [DOI] [PubMed] [Google Scholar]
  7. Creighton T. E., Goldenberg D. P. Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J Mol Biol. 1984 Nov 5;179(3):497–526. doi: 10.1016/0022-2836(84)90077-9. [DOI] [PubMed] [Google Scholar]
  8. Creighton T. E. The two-disulphide intermediates and the folding pathway of reduced pancreatic trypsin inhibitor. J Mol Biol. 1975 Jun 25;95(2):167–199. doi: 10.1016/0022-2836(75)90389-7. [DOI] [PubMed] [Google Scholar]
  9. Della-Cioppa G., Kishore G. M. Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate. EMBO J. 1988 May;7(5):1299–1305. doi: 10.1002/j.1460-2075.1988.tb02944.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dworetzky S. I., Lanford R. E., Feldherr C. M. The effects of variations in the number and sequence of targeting signals on nuclear uptake. J Cell Biol. 1988 Oct;107(4):1279–1287. doi: 10.1083/jcb.107.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eilers M., Hwang S., Schatz G. Unfolding and refolding of a purified precursor protein during import into isolated mitochondria. EMBO J. 1988 Apr;7(4):1139–1145. doi: 10.1002/j.1460-2075.1988.tb02923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eilers M., Schatz G. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature. 1986 Jul 17;322(6076):228–232. doi: 10.1038/322228a0. [DOI] [PubMed] [Google Scholar]
  13. Endo T., Kawakami M., Goto A., America T., Weisbeek P., Nakai M. Chloroplast protein import. Chloroplast envelopes and thylakoids have different abilities to unfold proteins. Eur J Biochem. 1994 Oct 1;225(1):403–409. doi: 10.1111/j.1432-1033.1994.00403.x. [DOI] [PubMed] [Google Scholar]
  14. Ettinger W. F., Theg S. M. Physiologically active chloroplasts contain pools of unassembled extrinsic proteins of the photosynthetic oxygen-evolving enzyme complex in the thylakoid lumen. J Cell Biol. 1991 Oct;115(2):321–328. doi: 10.1083/jcb.115.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ettinger W. F., Theg S. M. Sequence of the cDNA encoding the 17-kilodalton protein of the photosynthetic oxygen-evolving complex of pea. Plant Physiol. 1992 Jun;99(2):791–793. doi: 10.1104/pp.99.2.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feldherr C. M., Kallenbach E., Schultz N. Movement of a karyophilic protein through the nuclear pores of oocytes. J Cell Biol. 1984 Dec;99(6):2216–2222. doi: 10.1083/jcb.99.6.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Glover J. R., Andrews D. W., Rachubinski R. A. Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10541–10545. doi: 10.1073/pnas.91.22.10541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gray J. C., Row P. E. Protein translocation across chloroplast envelope membranes. Trends Cell Biol. 1995 Jun;5(6):243–247. doi: 10.1016/s0962-8924(00)89018-2. [DOI] [PubMed] [Google Scholar]
  19. Guéra A., America T., van Waas M., Weisbeek P. J. A strong protein unfolding activity is associated with the binding of precursor chloroplast proteins to chloroplast envelopes. Plant Mol Biol. 1993 Oct;23(2):309–324. doi: 10.1007/BF00029007. [DOI] [PubMed] [Google Scholar]
  20. Hanein D., Matlack K. E., Jungnickel B., Plath K., Kalies K. U., Miller K. R., Rapoport T. A., Akey C. W. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell. 1996 Nov 15;87(4):721–732. doi: 10.1016/s0092-8674(00)81391-4. [DOI] [PubMed] [Google Scholar]
  21. Hardie K. R., Schulze A., Parker M. W., Buckley J. T. Vibrio spp. secrete proaerolysin as a folded dimer without the need for disulphide bond formation. Mol Microbiol. 1995 Sep;17(6):1035–1044. doi: 10.1111/j.1365-2958.1995.mmi_17061035.x. [DOI] [PubMed] [Google Scholar]
  22. Jascur T., Goldenberg D. P., Vestweber D., Schatz G. Sequential translocation of an artificial precursor protein across the two mitochondrial membranes. J Biol Chem. 1992 Jul 5;267(19):13636–13641. [PubMed] [Google Scholar]
  23. Klösgen R. B., Brock I. W., Herrmann R. G., Robinson C. Proton gradient-driven import of the 16 kDa oxygen-evolving complex protein as the full precursor protein by isolated thylakoids. Plant Mol Biol. 1992 Mar;18(5):1031–1034. doi: 10.1007/BF00019226. [DOI] [PubMed] [Google Scholar]
  24. Ko K., Ko Z. W. Carboxyl-terminal sequences can influence the in vitro import and intraorganellar targeting of chloroplast protein precursors. J Biol Chem. 1992 Jul 15;267(20):13910–13916. [PubMed] [Google Scholar]
  25. Müller G., Zimmermann R. Import of honeybee prepromelittin into the endoplasmic reticulum: energy requirements for membrane insertion. EMBO J. 1988 Mar;7(3):639–648. doi: 10.1002/j.1460-2075.1988.tb02858.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakai M., Nohara T., Sugita D., Endo T. Identification and characterization of the sec-A protein homologue in the cyanobacterium Synechococcus PCC7942. Biochem Biophys Res Commun. 1994 Apr 29;200(2):844–851. doi: 10.1006/bbrc.1994.1528. [DOI] [PubMed] [Google Scholar]
  27. Nielsen V. S., Mant A., Knoetzel J., Møller B. L., Robinson C. Import of barley photosystem I subunit N into the thylakoid lumen is mediated by a bipartite presequence lacking an intermediate processing site. Role of the delta pH in translocation across the thylakoid membrane. J Biol Chem. 1994 Feb 4;269(5):3762–3766. [PubMed] [Google Scholar]
  28. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  29. Rassow J., Hartl F. U., Guiard B., Pfanner N., Neupert W. Polypeptides traverse the mitochondrial envelope in an extended state. FEBS Lett. 1990 Nov 26;275(1-2):190–194. doi: 10.1016/0014-5793(90)81469-5. [DOI] [PubMed] [Google Scholar]
  30. Reed J. E., Cline K., Stephens L. C., Bacot K. O., Viitanen P. V. Early events in the import/assembly pathway of an integral thylakoid protein. Eur J Biochem. 1990 Nov 26;194(1):33–42. doi: 10.1111/j.1432-1033.1990.tb19423.x. [DOI] [PubMed] [Google Scholar]
  31. Reinbothe S., Reinbothe C., Runge S., Apel K. Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. J Cell Biol. 1995 Apr;129(2):299–308. doi: 10.1083/jcb.129.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roffey R. A., Theg S. M. Analysis of the Import of Carboxyl-Terminal Truncations of the 23-Kilodalton Subunit of the Oxygen-Evolving Complex Suggests That Its Structure Is an Important Determinant for Thylakoid Transport. Plant Physiol. 1996 Aug;111(4):1329–1338. doi: 10.1104/pp.111.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schatz G., Dobberstein B. Common principles of protein translocation across membranes. Science. 1996 Mar 15;271(5255):1519–1526. doi: 10.1126/science.271.5255.1519. [DOI] [PubMed] [Google Scholar]
  34. Schiebel E., Driessen A. J., Hartl F. U., Wickner W. Delta mu H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell. 1991 Mar 8;64(5):927–939. doi: 10.1016/0092-8674(91)90317-r. [DOI] [PubMed] [Google Scholar]
  35. Schnell D. J., Blobel G. Identification of intermediates in the pathway of protein import into chloroplasts and their localization to envelope contact sites. J Cell Biol. 1993 Jan;120(1):103–115. doi: 10.1083/jcb.120.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Scott S. V., Theg S. M. A new chloroplast protein import intermediate reveals distinct translocation machineries in the two envelope membranes: energetics and mechanistic implications. J Cell Biol. 1996 Jan;132(1-2):63–75. doi: 10.1083/jcb.132.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shackleton J. B., Robinson C. Transport of proteins into chloroplasts. The thylakoidal processing peptidase is a signal-type peptidase with stringent substrate requirements at the -3 and -1 positions. J Biol Chem. 1991 Jul 5;266(19):12152–12156. [PubMed] [Google Scholar]
  38. Tani K., Mizushima S. A chemically cross-linked nonlinear proOmpA molecule can be translocated into everted membrane vesicles of Escherichia coli in the presence of the proton motive force. FEBS Lett. 1991 Jul 8;285(1):127–131. doi: 10.1016/0014-5793(91)80741-k. [DOI] [PubMed] [Google Scholar]
  39. Theg S. M., Scott S. V. Protein import into chloroplasts. Trends Cell Biol. 1993 Jun;3(6):186–190. doi: 10.1016/0962-8924(93)90212-j. [DOI] [PubMed] [Google Scholar]
  40. Vestweber D., Schatz G. A chimeric mitochondrial precursor protein with internal disulfide bridges blocks import of authentic precursors into mitochondria and allows quantitation of import sites. J Cell Biol. 1988 Dec;107(6 Pt 1):2037–2043. doi: 10.1083/jcb.107.6.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Walton P. A., Hill P. E., Subramani S. Import of stably folded proteins into peroxisomes. Mol Biol Cell. 1995 Jun;6(6):675–683. doi: 10.1091/mbc.6.6.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wolfe P. B., Wickner W. Bacterial leader peptidase, a membrane protein without a leader peptide, uses the same export pathway as pre-secretory proteins. Cell. 1984 Apr;36(4):1067–1072. doi: 10.1016/0092-8674(84)90056-4. [DOI] [PubMed] [Google Scholar]
  43. Wu C., Seibert F. S., Ko K. Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. J Biol Chem. 1994 Dec 23;269(51):32264–32271. [PubMed] [Google Scholar]
  44. Yuan J., Henry R., McCaffery M., Cline K. SecA homolog in protein transport within chloroplasts: evidence for endosymbiont-derived sorting. Science. 1994 Nov 4;266(5186):796–798. doi: 10.1126/science.7973633. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Biology of the Cell are provided here courtesy of American Society for Cell Biology

RESOURCES