Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1966 Aug;92(2):424–432. doi: 10.1128/jb.92.2.424-432.1966

Metabolism of Pipecolic Acid in a Pseudomonas Species IV. Electron Transport Particle of Pseudomonas putida

Marietta L Baginsky a,1, Victor W Rodwell a,2
PMCID: PMC276259  PMID: 16562131

Abstract

Baginsky, Marietta L. (University of California, San Francisco Medical Center, San Francisco), and Victor W. Rodwell. Metabolism of pipecolic acid in a Pseudomonas species. IV. Electron transport particle of Pseudomonas putida. J. Bacteriol. 92:424–432. 1966.—Enzymes of Pseudomonas putida P2 catalyzing oxidation of pipecolate to Δ1-piperideine-6-carboxylate are located in a subcellular fraction sedimenting at 105,000 × g. Since this fraction resembles the mammalian electron transport particle in both chemical composition and enzymatic activities, it was termed Pseudomonas P2 electron transport particle (P2-ETP). P2-ETP contains flavin adenine dinucleotide, flavin mononucleotide, iron, copper, and both b- and c-type cytochromes. The reduced type b cytochrome has absorption maxima at 558 to 559, 530, and 427 mμ. Its oxidized pyridine hemochromogen has an absorption maximum at 406 mμ, with a shoulder at 564 mμ. On dithionite reduction, absorption bands with maxima at 556, 522, and 418 mμ are obtained. The reduced type c cytochrome has absorption maxima at 552, 520, and 422 mμ; its reduced pyridine hemochromogen has maxima at 551, 516 to 519, and 418 mμ. No type a cytochrome was detected. P2-ETP catalyzes oxidation of pipecolate and of reduced nicotinamide adenine dinucleotide (NADH2) by oxygen. It can also oxidize these compounds, as well as succinate and reduced nicotinamide adenine dinucleotide phosphate, with 2,6-dichlorophenol-indophenol as electron acceptor. Mammalian cytochrome c can be used as an alternate artificial electron acceptor for the oxidation of pipecolate and succinate, but not for oxidation of NADH2.

Full text

PDF
424

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azoulay E., Couchoud-Beaumont P. Etude de la cytochrome-oxidase de Pseudomonas aeruginosa. Biochim Biophys Acta. 1965 Nov 22;110(2):301–311. [PubMed] [Google Scholar]
  2. BASFORD R. E., TISDALE H. D., GLENN J. L., GREEN D. E. Studies on the terminal electron transport system. VII. Further studies on the succinic dehydrogenase complex. Biochim Biophys Acta. 1957 Apr;24(1):107–115. doi: 10.1016/0006-3002(57)90152-x. [DOI] [PubMed] [Google Scholar]
  3. BASSO L. V., RAO D. R., RODWELL V. W. Metabolism of pipecolic acid in a Pseudomonas species. II. delta1-Piperideine-6-carboxylic acid and alpha-aminoadipic acid-delta-semial-dehyde. J Biol Chem. 1962 Jul;237:2239–2245. [PubMed] [Google Scholar]
  4. BLAIR P. V., ODA T., GREEN D. E. STUDIES ON THE ELECTRON TRANSFER SYSTEM. LIV. ISOLATION OF THE UNIT OF ELECTRON TRANSFER. Biochemistry. 1963 Jul-Aug;2:756–764. doi: 10.1021/bi00904a023. [DOI] [PubMed] [Google Scholar]
  5. BRODIE A. F., GRAY C. T. Bacterial particles in oxidative phosphorylation. Science. 1957 Mar 22;125(3247):534–537. doi: 10.1126/science.125.3247.534. [DOI] [PubMed] [Google Scholar]
  6. BRUEMMER J. H., WILSON P. W., GLENN J. L., CRANE F. L. Electron transporting particle from Azotobacter vinelandii. J Bacteriol. 1957 Jan;73(1):113–116. doi: 10.1128/jb.73.1.113-116.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CRANE F. L., GLENN J. L., GREEN D. E. Studies on the electron transfer system. IV. The electron transfer particle. Biochim Biophys Acta. 1956 Dec;22(3):475–487. doi: 10.1016/0006-3002(56)90058-0. [DOI] [PubMed] [Google Scholar]
  8. Calvert A. F., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. 3. L-alpha-aminoadipate delta-semialdehyde:nicotinamide adenine dinucleotide oxidoreductase. J Biol Chem. 1966 Jan 25;241(2):409–414. [PubMed] [Google Scholar]
  9. FLEISCHER S., KLOUWEN H., BRIERLEY G. Studies of the electron transfer system. 38. Lipid composition of purified enzyme preparations derived from beef heart mitochondria. J Biol Chem. 1961 Nov;236:2936–2941. [PubMed] [Google Scholar]
  10. FUJITA T., ITAGAKI E., SATO R. Purification and properties of cytochrome bl from Escherichia coli. J Biochem. 1963 Apr;53:282–290. [PubMed] [Google Scholar]
  11. GREEN D. E., WHARTON D. C. STOICHIOMETRY OF THE FIXED OXIDATION-REDUCTION COMPONENTS OF THE ELECTRON TRANSFER CHAIN OF BEEF HEART MITOCHONDRIA. Biochem Z. 1963;338:335–348. [PubMed] [Google Scholar]
  12. HORIO T., HIGASHI T., SASAGAWA M., KUSAI K., NAKAI M., OKUNUKI K. Preparation of crystalline Pseudomonas cvtochrome c-551 and its general properties. Biochem J. 1960 Oct;77:194–201. doi: 10.1042/bj0770194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HORIO T., HIGASHI T., YAMANAKA T., MATSUBARA H., OKUNUKI K. Purification and properties of cytochrome oxidase from Pseudomonas aeruginosa. J Biol Chem. 1961 Mar;236:944–951. [PubMed] [Google Scholar]
  14. JACOBS N. J., WOLIN M. J. Electron-transport system of Vibrio succinogenes. I. Enzymes and cytochromes of electron-transport system. Biochim Biophys Acta. 1963 Jan 1;69:18–28. doi: 10.1016/0006-3002(63)91221-6. [DOI] [PubMed] [Google Scholar]
  15. KAMEN M. D., TAKEDA Y. A comparative study of bacterial and mammalian cytochrome. Biochim Biophys Acta. 1956 Sep;21(3):518–523. doi: 10.1016/0006-3002(56)90189-5. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. MCDONALD J. K., ANDERSON J. A., CHELDELIN V. H., KING T. E. SUCCINATE DEHYDROGENASE IN THE ERGOT FUNGUS CLAVICEPS PURPUREA. Biochim Biophys Acta. 1963 Aug 6;73:533–549. doi: 10.1016/0006-3002(63)90325-1. [DOI] [PubMed] [Google Scholar]
  18. MILITZER W., SONDEREGGER T. B., TUTTLE L. C. Thermal enzymes. II. Cytochromes. Arch Biochem. 1950 Apr;26(2):299–306. [PubMed] [Google Scholar]
  19. MILITZER W., SONDEREGGER T. B. Thermal enzymes. Arch Biochem. 1949 Nov;24(1):75–82. [PubMed] [Google Scholar]
  20. RAO D. R., RODWELL V. W. Metabolism of pipecolic acid in a Pseudomonas species. I. alpha-Aminoadipic and glutamic acids. J Biol Chem. 1962 Jul;237:2232–2238. [PubMed] [Google Scholar]
  21. ROTHSTEIN M., GREENBERG D. M. The metabolism of DL-pipecolic acid-2-C14. J Biol Chem. 1960 Mar;235:714–718. [PubMed] [Google Scholar]
  22. Rees M., Nason A. A P-450-like cytochrome and a soluble terminal oxidase identified as cytochrome o from Nitrosomonas europaea. Biochem Biophys Res Commun. 1965 Nov 8;21(3):248–256. doi: 10.1016/0006-291x(65)90279-2. [DOI] [PubMed] [Google Scholar]
  23. STANIER R. Y., GUNSALUS I. C., GUNSALUS C. F. The enzymatic conversion of mandelic acid to benzoic acid. II. Properties of the particulate fractions. J Bacteriol. 1953 Nov;66(5):543–547. doi: 10.1128/jb.66.5.543-547.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. YAMANAKA T., KIJIMOTO S., OKUNUKI K. Biological significance of Pseudomonas cytochrome oxidase in Pseudomonas aeruginosa. J Biochem. 1963 May;53:416–421. doi: 10.1093/oxfordjournals.jbchem.a127716. [DOI] [PubMed] [Google Scholar]
  25. YAMANAKA T., OKUNUKI K. Crystalline Pseudomonas cytochrome oxidase. I. Enzymic properties with special reference to the biological specificity. Biochim Biophys Acta. 1963 Mar 12;67:379–393. doi: 10.1016/0006-3002(63)91844-4. [DOI] [PubMed] [Google Scholar]
  26. YAMANAKA T., OKUNUKI K. Crystalline Pseudomonas cytochrome oxidase. II. Spectral properties of the enzyme. Biochim Biophys Acta. 1963 Mar 12;67:394–406. doi: 10.1016/0006-3002(63)91845-6. [DOI] [PubMed] [Google Scholar]
  27. ZAUGG W. S., RIESKE J. S. The quantitative estimation of cytochrome b in sub-mitochondrial particles from beef heart. Biochem Biophys Res Commun. 1962 Oct 17;9:213–217. doi: 10.1016/0006-291x(62)90060-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES