Abstract
Trevithick, John R. (University of Wisconsin Medical School, Madison), Robert L. Metzenberg and Donald F. Costello. Genetic alteration of pore size and other properties of the Neurospora cell wall. J. Bacteriol. 92:1016–1020. 1966.—Several properties of the cell walls of wild type and the osmotic mutant of Neurospora crassa have been examined. The peameability of the isolated cell walls to polyethylene glycol and dextran polymers of different molecular weights was investigated by the volume of distribution technique. The exclusion thresholds were evaluated by a statistical treatment. The molecular weights corresponding to these thresholds for wild type and osmotic were approximately 4,750 and 18,500, respectively; these values are significantly different. The cell walls of osmotic appeared to be thinner, more easily broken, and more easily compressed to ribbonlike shapes, whereas those of wild type were tubular and strong. Chemical analysis showed that osmotic walls had roughly a 30-fold higher galactosamine-glucosamine ratio than did wild type. It is proposed that the osmotic mutant has a cell wall with abnormally large pores, and that this may account for the increased rate of egress of invertase and the decreased fractionation of light from heavy invertase in this strain.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLACK S. H., GERHARDT P. Permeability of bacterial spores. I. Characterization of glucose uptake. J Bacteriol. 1961 Nov;82:743–749. doi: 10.1128/jb.82.5.743-749.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLACK S. H., GERHARDT P. Permeability of bacterial spores. IV. Water content, uptake, and distribution. J Bacteriol. 1962 May;83:960–967. doi: 10.1128/jb.83.5.960-967.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GERHARDT P., JUDGE J. A. POROSITY OF ISOLATED CELL WALLS OF SACCHAROMYCES CEREVISIAE AND BACILLUS MEGATERIUM. J Bacteriol. 1964 Apr;87:945–951. doi: 10.1128/jb.87.4.945-951.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAMILTON J. G., CALVET J. PRODUCTION OF PROTOPLASTS IN AN OSMOTIC MUTANT OF NEUROSPORA CRASSA WITHOUT ADDED ENZYME. J Bacteriol. 1964 Oct;88:1084–1086. doi: 10.1128/jb.88.4.1084-1086.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- METZENBERG R. L. ENZYMICALLY ACTIVE SUBUNITS OF NEUROSPORA INVERTASE. Biochim Biophys Acta. 1964 Aug 26;89:291–302. doi: 10.1016/0926-6569(64)90217-2. [DOI] [PubMed] [Google Scholar]
- Trevithick J. R., Metzenberg R. L. Molecular sieving by Neurospora cell walls during secretion of invertase isozymes. J Bacteriol. 1966 Oct;92(4):1010–1015. doi: 10.1128/jb.92.4.1010-1015.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]