Abstract
Tucker, Fayne L. (University of Southern California, Los Angeles), John W. Thomas, Milo D. Appleman, Stewart H. Goodman, and Jerry Donohue. X-ray diffraction studies on metal deposition in group D streptococci. J. Bacteriol. 92:1311–1314. 1966.—Streptococcus faecalis N83 and S. faecium K6A reduced several compounds of Group VI elements to the elemental form, but reduced none of several compounds tested containing elements of other groups. The elemental tellurium deposited by S. faecium K6A was in general of a larger particle size than that deposited by S. faecalis N83 as judged from X-ray diffraction analysis. The particle size of the deposited tellurium was correlated with the blackness of the precipitate produced by cells growing in the presence of tellurite. A black and gray variation was observed in S. faecium K6A which was considered to be due to particle size, the amount of tellurium present, and the location of the deposited tellurium. The gray color of S. faecium K6A was not due to the presence of any oxidized tellurium products.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- APPLEMAN M. D., HEINMILLER I. M. Comparison of tellurite resistance and tetracycline resistance among the enterococci. Appl Microbiol. 1961 Sep;9:391–394. doi: 10.1128/am.9.5.391-394.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARRNETT R. J., PALADE G. E. Histochemical demonstration of the sites of activity of dehydrogenase systems with the electron microscope. J Biophys Biochem Cytol. 1957 Jul 25;3(4):577–588. doi: 10.1083/jcb.3.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEST H. Oxidation and evolution of molecular hydrogen by microorganisms. Bacteriol Rev. 1954 Mar;18(1):43–73. doi: 10.1128/br.18.1.43-73.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HENDERSON H. J., MUDD S., TAKEYA K. Electron-scattering granules and reducing sites in mycobacteria. J Bacteriol. 1956 Dec;72(6):767–783. doi: 10.1128/jb.72.6.767-783.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NERMUT M. V. DETERMINATION OF TELLURIUM IN THE CELLS OF GRAM-NEGATIVE BACTERIA. Folia Microbiol (Praha) 1963;40:370–375. doi: 10.1007/BF02906035. [DOI] [PubMed] [Google Scholar]
- NICKERSON W. J., FALCONE G. ENZYMATIC REDUCTION OF SELENITE. J Bacteriol. 1963 Apr;85:763–771. doi: 10.1128/jb.85.4.763-771.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TERAI T., KAMAHORA T., YAMAMURA Y. Tellurite reductase from Mycobacterium avium. J Bacteriol. 1958 May;75(5):535–539. doi: 10.1128/jb.75.5.535-539.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TUCKER F. L., WALPER J. F., APPLEMAN M. D., DONOHUE J. Complete reduction of tellurite to pure tellurium metal by microorganisms. J Bacteriol. 1962 Jun;83:1313–1314. doi: 10.1128/jb.83.6.1313-1314.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VAN ITERSON, LEENE W. A CYTOCHEMICAL LOCALIZATION OF REDUCTIVE SITES IN A GRAM-POSITIVE BACTERIUM. TELLURITE REDUCTION IN BACILLUS SUBTILIS. J Cell Biol. 1964 Mar;20:361–375. doi: 10.1083/jcb.20.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALPER J. F., TUCKER F. L., APPLEMAN M. D. Use of thioacetamide for the quantitative determination of tellurite in bacteriological media. Anal Biochem. 1962 Apr;3:298–301. doi: 10.1016/0003-2697(62)90113-6. [DOI] [PubMed] [Google Scholar]
- WOOLFOLK C. A., WHITELEY H. R. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J Bacteriol. 1962 Oct;84:647–658. doi: 10.1128/jb.84.4.647-658.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
