Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009;332:33–54. doi: 10.1007/978-3-540-70868-1_3

Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Expression, Folding, Assembly and Functionality

S Chebolu 2, H Daniell 2
Editor: Alexander V Karasev1
PMCID: PMC2764311  NIHMSID: NIHMS150656  PMID: 19401820

Abstract

Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chap-erones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bio-reactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.

Keywords: Human Serum Albumin, Chloroplast Genome, Total Soluble Protein, Therapeutic Protein, Oral Delivery

Contributor Information

Alexander V. Karasev, Email: akarasev@uidaho.edu

S. Chebolu, Email: daniell@mail.ucf.edu

H. Daniell, Email: daniell@mail.ucf.edu

References

  1. Arlen PA, Singleton M, Adamovicz JJ, Ding Y, Davoodi-Semiromi A, Daniell H. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect. Immun. 2008;76:3640–3650. doi: 10.1128/IAI.00050-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole AM, Oishi KK, Daniell H. Field production and functional evaluation of chloroplast-derived interferon-alpha2b. Plant Biotechnol. J. 2007;5:511–525. doi: 10.1111/j.1467-7652.2007.00258.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baillie L. The development of new vaccines against Bacillus anthracis. J Appl Microbiol. 2001;91:609–613. doi: 10.1046/j.1365-2672.2001.01498.x. [DOI] [PubMed] [Google Scholar]
  4. Bogorad L. Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends Biotechnol. 2000;18:257–263. doi: 10.1016/S0167-7799(00)01444-X. [DOI] [PubMed] [Google Scholar]
  5. Daniell H. Molecular strategies for gene containment in transgenic crops. Nat Biotechnol. 2002;20:581–586. doi: 10.1038/nbt0602-581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniell H. Medical Molecular Pharming. In: Goodman RM, editor. The encyclopedia of plant and crop sciences. New York: Marcel Dekker; 2004. pp. 705–710. [Google Scholar]
  7. Daniell H, Dhingra A. Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol. 2002;13:136–141. doi: 10.1016/S0958-1669(02)00297-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daniell H, Wycoff K (2001) WO Patent 01-64929, 2001
  9. Daniell H, Guda C, McPherson DT, Xu J, Zhang X, Urry DW. Hyperexpression of an environmentally friendly synthetic polymer gene. Methods Mol Biol. 1997;63:359–371. doi: 10.1385/0-89603-481-X:359. [DOI] [PubMed] [Google Scholar]
  10. Daniell H, Dhingra A, Fernández-San Millán A. 12th International Congress on Photosynthesis. Brisbane, Australia: CSIRO Publishing; 2001a. Chloroplast transgenic approach for production of antibodies, biopharmaceuticals and edible vaccines; pp. 1–6. [Google Scholar]
  11. Daniell H, Lee SB, Panchal T, Wiebe P. Expression of native cholera toxin B sub-unit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol. 2001b;311:1001–1009. doi: 10.1006/jmbi.2001.4921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daniell H, Muthukumar B, Lee SB. Marker free transgenic plants: engineering the chlo-roplast genome without the use of antibiotic selection. Curr Genet. 2001c;39:109–116. doi: 10.1007/s002940100185. [DOI] [PubMed] [Google Scholar]
  13. Daniell H, Streatfield SJ, Wycoff K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 2001d;6:219–226. doi: 10.1016/S1360-1385(01)01922-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Daniell H, Wiebe PO, Millan AF. Antibiotic-free chloroplast genetic engineering: an environmentally friendly approach. Trends Plant Sci. 2001e;6:237–239. doi: 10.1016/S1360-1385(01)01949-5. [DOI] [PubMed] [Google Scholar]
  15. Daniell H. Medical Molecular Pharming. In: Goodman RM, editor. The encyclopedia of plant and crop sciences. New York: Marcel Dekker; 2004. pp. 705–710. [Google Scholar]
  16. Daniell H, Carmona-Sanchez O, Burns B. Chloroplast derived antibodies, biopharmaceu-ticals and edible vaccines. In: Fischer R, Schillberg S, editors. Molecular Farming. Weinheim, Germany: Wiley-VerlagVCH; 2004a. pp. 113–133. [Google Scholar]
  17. Daniell H, Watson J, Koya V, Leppla SH. Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine. 2004b;22:4374–4384. doi: 10.1016/j.vaccine.2004.01.069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. De Cosa B, Moar W, Lee SB, Miller M, Daniell H. Over expression of the cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol. 2001;19:71–74. doi: 10.1038/83559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol. 2001;127:852–862. doi: 10.1104/pp.010233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dhingra A, Portis AR, Daniell H. Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc Natl Acad Sci U S A. 2004;101:6315–6320. doi: 10.1073/pnas.0400981101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Elderbaum O, Stein D, Holland N, Gafni Y, Livneh O, Novick D, Rubinstein M, Sele I. Expression of active human interferon beta in transgenic plants. J Interferon Res. 1992;12:449–453. doi: 10.1089/jir.1992.12.449. [DOI] [PubMed] [Google Scholar]
  22. Falconer R (2002) Expression of Interferon alpha 2b in transgenic chloroplasts of a low-nicotine tobacco. M.S. thesis, University of Central Florida
  23. Fernández-San Millán A, Mingo-Castel A, Miller M, Daniell H. A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotech J. 2003;1:71–79. doi: 10.1046/j.1467-7652.2003.00008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Figueroa-Soto CG, Guillermo LC, Valenzuela-Soto EM. Immunolocalization of betaine aldehyde dehydrogenase in porcine kidneys. Biochem Biophys Res Commun. 1999;258:732–736. doi: 10.1006/bbrc.1999.0584. [DOI] [PubMed] [Google Scholar]
  25. Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as factories for biopharma-ceuticals. Nat Biotechnol. 2000;18:1151–1155. doi: 10.1038/81132. [DOI] [PubMed] [Google Scholar]
  26. Gomez N, Carrillo C, Salinas J, Parra F, Borca M V, Escribano JM. Expression of immuno-genic glycoprotein S polypeptides from transmissible gastroenteritis corona virus in transgenic plants. Virology. 1998;249:352–358. doi: 10.1006/viro.1998.9315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Guda C, Lee SB, Daniell H. Stable expression of a protein based polymer in tobacco chlo-roplasts. Plant Cell Rep. 2000;19:257–262. doi: 10.1007/s002990050008. [DOI] [PubMed] [Google Scholar]
  28. Haq TA, Mason HS, Clements JD, Arntzen CJ. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science. 1995;268:714–716. doi: 10.1126/science.7732379. [DOI] [PubMed] [Google Scholar]
  29. Iatham S, Day A. Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol. 2000;18:1172–1176. doi: 10.1038/81161. [DOI] [PubMed] [Google Scholar]
  30. Ivins B, Fellows P, Pitt L, Estep J, Farchaus J, Friedlander A, et al. Experimental anthrax vaccines: efficacy of adjuvants combined with protective antigen against an aerosol Bacillus anthracis spore challenge in guinea pigs. Vaccine. 1995;13:1779–1783. doi: 10.1016/0264-410X(95)00139-R. [DOI] [PubMed] [Google Scholar]
  31. Jacob L, Zasloff M. Potential therapeutic applications of magainins and other microbial; agents animal origin: antimicrobial peptides. Ciba Found Symp. 1994;186:197–223. doi: 10.1002/9780470514658.ch12. [DOI] [PubMed] [Google Scholar]
  32. Joellenback LM, Zwanziger LL, Durch JS, Strom BL, editors. “Anthrax vaccine manufacture” in the anthrax vaccine. Is it safe? Does it work? Washington, DC: National Academy; 2002. pp. 180–197. [PubMed] [Google Scholar]
  33. Kaufmann AF, Meltzer MI, Schmid GP. The economic impact of a bioterrorist attack: are prevention and post attack intervention programs justifiable? Emerg Infect Dis. 1997;3:83–94. doi: 10.3201/eid0302.970201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Klaus SM, Huang FC, Golds TJ, Koop HU. Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol. 2004;22:225. doi: 10.1038/nbt933. [DOI] [PubMed] [Google Scholar]
  35. Kumar S, Dhingra A, Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol. 2004;136:2843–2854. doi: 10.1104/pp.104.045187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Langeveld JP, Casal JI, Osterhaus AD, Cortes E, de Swart R, Vela C, Dalsgaard K, Puijk WC, Schaaper WM, Meloen RH. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. J Virol. 1994;68:4506–4513. doi: 10.1128/jvi.68.7.4506-4513.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Langeveld JP, Kamstrup S, Uttenthal A, Strandbygaard B, Vela C, Dalsgaard K, Beekman NJ, Meloen RH, Casal JI. Full protection in mink against enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein. Vaccine. 1995;13:1033–1037. doi: 10.1016/0264-410X(95)00021-R. [DOI] [PubMed] [Google Scholar]
  38. Larrick JW, Thomas DW. Producing protein in transgenic plants and animals. Curr Opin Biotechnol. 2001;12:411–418. doi: 10.1016/S0958-1669(00)00236-6. [DOI] [PubMed] [Google Scholar]
  39. Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed. 2003;11:1–13. doi: 10.1023/A:1022100404542. [DOI] [Google Scholar]
  40. Leelavathi S, Reddy VS. Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed. 2003;11:49–58. doi: 10.1023/A:1022114427971. [DOI] [Google Scholar]
  41. Mason HS, Lam D, Arntzen CJ. Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A. 1992;89:11745–11749. doi: 10.1073/pnas.89.24.11745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mason HS, Haq TA, Clements JD, Arntzen CJ. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine. 1998;16:1336–1343. doi: 10.1016/S0264-410X(98)80020-0. [DOI] [PubMed] [Google Scholar]
  43. Molina A, Hervas-Stubbs S, Daniell H, Mingo-Castel AM, Veramendi J. High yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol. 2004;2:141–153. doi: 10.1046/j.1467-7652.2004.00057.x. [DOI] [PubMed] [Google Scholar]
  44. Ruiz G (2002) Optimization of codon composition and regulatory elements for expression of the human IGF-1 in transgenic chloroplasts. MS thesis, University of Central Florida [DOI] [PMC free article] [PubMed]
  45. Singleton ML (2003) Expression of CaF1 and LcrV as a fusion protein for a vaccine against Yersinia pestis via chloroplast genetic engineering. MS thesis, University of Central Florida
  46. Tackaberry E, Dudani A, Prior F, Tocchi M, Sardana R, Altosaar I, Ganz PR. Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine. 1999;17:3020–3029. doi: 10.1016/S0264-410X(99)00150-4. [DOI] [PubMed] [Google Scholar]
  47. Thanavala Y, Yang Y, Lyon P, Mason HS, Arntzen C. Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc Natl Acad Sci U S A. 1995;92:3358–3361. doi: 10.1073/pnas.92.8.3358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Titball RW, Williamson ED. Vaccination against bubonic and pneumonic plague. Vaccine. 2001;19:4175–4184. doi: 10.1016/S0264-410X(01)00163-3. [DOI] [PubMed] [Google Scholar]
  49. Torrado J, Carrascosa C. Pharmacological characteristics of parenteral IGF-I administration. Curr Pharm Biotechnol. 2003;4:123–140. doi: 10.2174/1389201033489865. [DOI] [PubMed] [Google Scholar]
  50. Urry DW, McPherson DT, Xu J, Daniell H, Guda C, Gowda DC, Jing N, Parker TM. Protein based polymeric materials: synthesis and properties. In: Salamone JC, editor. The polymeric materials encyclopedia: synthesis, properties and applications. Boca Raton, FL: CRC Press; 1996. pp. 2645–2699. [Google Scholar]
  51. Vivek BS, Ngo QA, Simon PW. Evidence for maternal inheritance of the chloroplast genome in cultivated carrot (Daucus carota L. ssp. sativus) Theor Appl Genet. 1999;98:669–672. doi: 10.1007/s001220051119. [DOI] [Google Scholar]
  52. Williamson ED, Eley SM, Stagg AJ, Green M, Russell P, Titball RW. A sub-unit vaccine elicits IgG in serum, spleen cell cultures and bronchial washings and protects immunized animals against plague. Vaccine. 1997;15:1079–1084. doi: 10.1016/S0264-410X(96)00303-9. [DOI] [PubMed] [Google Scholar]
  53. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84:5449–5953. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zhang Q, Liu Y, Sodmergen Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol. 2003;44:941–951. doi: 10.1093/pcp/pcg121. [DOI] [PubMed] [Google Scholar]

Articles from Plant-produced Microbial Vaccines are provided here courtesy of Nature Publishing Group

RESOURCES