Abstract
Ganesan, Ann K. (Syntex Institute of Molecular Biology, Palo Alto, Calif.), and Boris Rotman. Transfer and incorporation of genes controlling β-d-galactosidase synthesis from Hfr and F′ donors of Escherichia coli. J. Bacteriol. 92:1378–1382. 1966.—Comparisons were made between Hfr1 and F13 donors with respect to the frequency of transfer and incorporation of genes controlling β-d-galactosidase synthesis. The Hfr1 donor transfers these genes as part of the chromosome, and the F13 donor transfers them by F-duction. The criterion used for gene transfer was the acquisition by recipient cells of the ability to synthesize the enzyme, β-d-galactosidase, measured by fluorogenic assays at the single-cell level. The criterion for incorporation was the formation of lac+ recombinant colonies. It was found that the two types of donor showed the same frequency of gene transfer, but the probability of incorporation was 10-fold higher in F13 matings than in Hfr1 matings. In the former, between 46 and 97% of the merozygotes produced recombinant colonies; in the latter, 2 to 6% did so.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CAVALLI-SFORZA L. L. La sessualità nei batteri. Boll Ist Sieroter Milan. 1950 Sep-Oct;29(9-10):281–289. [PubMed] [Google Scholar]
- COOK A., LEDERBERG J. Recombination studies of lactose nonfermenting mutants of Escherichia coli K-12. Genetics. 1962 Oct;47:1335–1353. doi: 10.1093/genetics/47.10.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JACOB F., WOLLMAN E. L. Sur les processus de conjugaison et de recombinaison chez Escherichia coli. I. L'induction par conjugaison ou induction zygotique. Ann Inst Pasteur (Paris) 1956 Oct;91(4):486–510. [PubMed] [Google Scholar]
- LARK K. G., LARK C. Changes during the division cycle in bacterial cell wall synthesis, volume, and ability to concentrate free amino acids. Biochim Biophys Acta. 1960 Oct 7;43:520–530. doi: 10.1016/0006-3002(60)90474-1. [DOI] [PubMed] [Google Scholar]
- LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PITTARD J., RAMAKRISHNAN T. GENE TRANSFER BY F' STRAINS OF ESCHERICHIA COLI. IV. EFFECT OF A CHROMOSOMAL DELETION ON CHROMOSOME TRANSFER. J Bacteriol. 1964 Aug;88:367–373. doi: 10.1128/jb.88.2.367-373.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REVEL H. R. SYNTHESIS OF BETA-D-GALACTOSIDASE AFTER F-DUCTION OF LAC+GENES INTO ESCHERICHIA COLI. J Mol Biol. 1965 Jan;11:23–34. doi: 10.1016/s0022-2836(65)80168-1. [DOI] [PubMed] [Google Scholar]
- RILEY M., PARDEE A. B. Nutritional effects on frequencies of bacterial recombination. J Bacteriol. 1962 Jun;83:1332–1335. doi: 10.1128/jb.83.6.1332-1335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROTMAN B. Measurement of activity of single molecules of beta-D-galactosidase. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1981–1991. doi: 10.1073/pnas.47.12.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROTMAN B., ZDERIC J. A., EDELSTEIN M. Fluorogenic substrates for beta-D-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc Natl Acad Sci U S A. 1963 Jul;50:1–6. doi: 10.1073/pnas.50.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLLMAN E. L., JACOB F., HAYES W. Conjugation and genetic recombination in Escherichia coli K-12. Cold Spring Harb Symp Quant Biol. 1956;21:141–162. doi: 10.1101/sqb.1956.021.01.012. [DOI] [PubMed] [Google Scholar]
- WOLLMAN E. L., JACOB F. Sur le mécanisme du transfert de matériel géaé tique au cours de la recombinaison chez Escherichia coli K12. C R Hebd Seances Acad Sci. 1955 Jun 20;240(25):2449–2451. [PubMed] [Google Scholar]
