Abstract
Escherichia coli K-12 strain AB259 can be induced to form capsular polysaccharide (mucoid clones) by dl-p-fluorophenylalanine (FPA; 5 × 10−6m on agar plates at 37 C or 8 × 10−5m in liquid medium at 30 C). The change was shown to be phenotypic. An increase in enzymes probably involved in capsular polysaccharide synthesis [phosphomannose isomerase (3.3-fold), uridine diphosphate-d-galactose-4-epimerase (2.5-fold), and guanine diphosphate-l-fucose synthetase] was demonstrated as a result of growth in FPA. These increases appear sufficient to account for the increased synthesis of capsular polysaccharide due to growth in FPA. FPA-resistant derivatives of strain AB259 were obtained by selecting mutants on FPA-containing agar or by transducing in an altered phenylalanyl soluble ribonucleic acid synthetase that activates FPA poorly. Mucoid clones were formed by these strains only in the presence of 30 to 1,000 times as much FPA. Among these strains, there was a close correlation between incorporation of FPA-C14 and induction of capsular polysaccharide synthesis. The results are thus consistent with the following model: FPA is incorporated into the protein product of the R1 gene (repressor) and alters it sufficiently to allow derepression of several enzymes.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEISER S. M., DAVIS B. D. Mucoid mutants of Escherichia coli. J Bacteriol. 1957 Sep;74(3):303–307. doi: 10.1128/jb.74.3.303-307.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BENZER S., CHAMPE S. P. A change from nonsense to sense in the genetic code. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1114–1121. doi: 10.1073/pnas.48.7.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourgeois S., Cohn M., Orgel L. E. Suppression of and complementation among mutants of the regulatory gene of the lactose operon of Escherichia coli. J Mol Biol. 1965 Nov;14(1):300–302. doi: 10.1016/s0022-2836(65)80252-2. [DOI] [PubMed] [Google Scholar]
- COHN M. Section III. Immunochemical methods for determining homogeneity of proteins and polysaccharides. Methods Med Res. 1952;5:268–378. [PubMed] [Google Scholar]
- Capecchi M. R., Gussin G. N. Suppression in vitro: Identification of a Serine-sRNA as a "Nonsense" Suppressor. Science. 1965 Jul 23;149(3682):417–422. doi: 10.1126/science.149.3682.417. [DOI] [PubMed] [Google Scholar]
- DEMOSS J. A., NOVELLI G. D. An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP in microbial extracts. Biochim Biophys Acta. 1956 Oct;22(1):49–61. doi: 10.1016/0006-3002(56)90222-0. [DOI] [PubMed] [Google Scholar]
- FANGMAN W. L., NEIDHARDT F. C. DEMONSTRATION OF AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE IN A MUTANT OF ESCHERICHIA COLI. J Biol Chem. 1964 Jun;239:1839–1843. [PubMed] [Google Scholar]
- FANGMAN W. L., NEIDHARDT F. C. PROTEIN AND RIBONUCLEIC ACID SYNTHESIS IN A MUTANT OF ESCHERICHIA COLI WITH AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE. J Biol Chem. 1964 Jun;239:1844–1847. [PubMed] [Google Scholar]
- FRAENKEL D., OSBORN M. J., HORECKER B. L., SMITH S. M. Metabolism and cell wall structure of a mutant of Salmonella typhimurium deficient in phosphoglucose isomerase. Biochem Biophys Res Commun. 1963 Jun 20;11:423–428. doi: 10.1016/0006-291x(63)90086-x. [DOI] [PubMed] [Google Scholar]
- Fangman W. L., Nass G., Neidhardt F. C. Immunological and chemical studies of phenylalanyl sRNA synthetase from Escherichia coli. J Mol Biol. 1965 Aug;13(1):202–219. doi: 10.1016/s0022-2836(65)80090-0. [DOI] [PubMed] [Google Scholar]
- GALLANT J., STAPLETON R. PHYSIOLOGICAL EVIDENCE ON THE NATURE OF THE REPRESSOR OF ALKALINE PHOSPHATASE SYNTHESIS IN ESCHERICHIA COLI. J Mol Biol. 1964 Apr;8:431–441. doi: 10.1016/s0022-2836(64)80001-2. [DOI] [PubMed] [Google Scholar]
- GALLANT J., STAPLETON R. PROPERTIES OF A TEMPERATURE-SENSITIVE REGULATORY SYSTEM. Proc Natl Acad Sci U S A. 1963 Aug;50:348–355. doi: 10.1073/pnas.50.2.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GAREN A., GAREN S. Genetic evidence on the nature of the repressor for alkaline phosphatase in E. coli. J Mol Biol. 1963 May;6:433–438. doi: 10.1016/s0022-2836(63)80054-6. [DOI] [PubMed] [Google Scholar]
- GAREN A., SIDDIQI O. Suppression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1121–1127. doi: 10.1073/pnas.48.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEPES A., BEGUIN S. HYDROXYLAMINE, AN INHIBITOR OF PEPTIDE CHAIN INITIATION. Biochem Biophys Res Commun. 1965 Feb 3;18:377–383. doi: 10.1016/0006-291x(65)90717-5. [DOI] [PubMed] [Google Scholar]
- Kalckar H. M., Kurahashi K., Jordan E. HEREDITARY DEFECTS IN GALACTOSE METABOLISM IN ESCHERICHIA COLI MUTANTS, I. DETERMINATION OF ENZYME ACTIVITIES. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1776–1786. doi: 10.1073/pnas.45.12.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
- LEVIN A. P., HARTMAN P. E. ACTION OF A HISTIDINE ANALOGUE, 1,2,4-TRIAZOLE-3-ALANINE, IN SALMONELLA TYPHIMURIUM. J Bacteriol. 1963 Oct;86:820–828. doi: 10.1128/jb.86.4.820-828.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARKOVITZ A. BIOSYNTHESIS OF GUANOSINE DIPHOSPHATE D-RHAMNOSE AND GUANOSINE DIPHOSPHATE D-TALOMETHYLOSE FROM GUANOSINE DIPHOSPHATE ALPHA-D-MANNOSE. J Biol Chem. 1964 Jul;239:2091–2098. [PubMed] [Google Scholar]
- MARKOVITZ A. REGULATORY MECHANISMS FOR SYNTHESIS OF CAPSULAR POLYSACCHARIDE IN MUCOID MUTANTS OF ESCHERICHIA COLI K12. Proc Natl Acad Sci U S A. 1964 Feb;51:239–246. doi: 10.1073/pnas.51.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
- MUNIER R. L., SARRAZIN G. ETUDE DE L'ORIGINE DES DIFF'ERENCES DE STABILIT'E PR'ESENT'EES PAR LA BETA-GALACTOSIDASE NORMALE ET LA BETA-GALACTOSIDASE DONT TOUS LES GROUPES TYROSINE SONT REMPLAC'ES PAR LA 3-FLUOROTYROSINE. C R Hebd Seances Acad Sci. 1964 Jul 27;259:937–940. [PubMed] [Google Scholar]
- Markovitz A., Rosenbaum N. A regulator gene that is dominant on an episome and recessive on a chromosome. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1084–1091. doi: 10.1073/pnas.54.4.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller-Hill B. Suppressible regulator constitutive mutants of the lactose system in Escherichia coli. J Mol Biol. 1966 Jan;15(1):374–376. doi: 10.1016/s0022-2836(66)80234-6. [DOI] [PubMed] [Google Scholar]
- RICHMOND M. H. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bacteriol Rev. 1962 Dec;26:398–420. doi: 10.1128/br.26.4.398-420.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SADLER J. R., NOVICK A. THE PROPERTIES OF REPRESSOR AND THE KINETICS OF ITS ACTION. J Mol Biol. 1965 Jun;12:305–327. doi: 10.1016/s0022-2836(65)80255-8. [DOI] [PubMed] [Google Scholar]
- SARABHAI A. S., STRETTON A. O., BRENNER S., BOLLE A. CO-LINEARITY OF THE GENE WITH THE POLYPEPTIDE CHAIN. Nature. 1964 Jan 4;201:13–17. doi: 10.1038/201013a0. [DOI] [PubMed] [Google Scholar]
- WEIGERT M. G., GAREN A. AMINO ACID SUBSTITUTIONS RESULTING FROM SUPPRESSION OF NONSENSE MUTATIONS. I. SERINE INSERTION BY THE SU-1 SUPPRESSOR GENE. J Mol Biol. 1965 Jun;12:448–455. doi: 10.1016/s0022-2836(65)80267-4. [DOI] [PubMed] [Google Scholar]