Abstract
When cells of Escherichia coli B growing in a glucose-synthetic medium were treated with mitomycin C, the effects produced by the antibiotic varied, depending on the concentration. When the concentration was reduced to less than 0.1 μg/ml, the action of the antibiotic was bacteriostatic; cell elongation resulted, but no effect on the synthesis of cellular macromolecules was apparent. At higher levels (more than 5 μg/ml), mitomycin C was highly bactericidal and inhibited deoxyribonucleic acid synthesis almost completely. The exposure of growing cells to a bactericidal level of mitomycin C resulted also in a delayed inhibition of the synthesis of ribonucleic acid (RNA) and protein. The capacity of the treated cells to synthesize β-galactosidase inducibly in a medium free from a carbon source remained constant for the first 30 min and then was destroyed progressively with time. Prolonged incubation with the bactericidal level of mitomycin C caused a degradation of cellular nucleic acids, particularly RNA. The degraded nucleic acid components were eventually released into the medium.
Full text
PDF![675](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5b/276494/06d0231860d7/jbacter00408-0205.png)
![676](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5b/276494/50ad1f4b35c0/jbacter00408-0206.png)
![677](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5b/276494/052123d3f62a/jbacter00408-0207.png)
![678](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5b/276494/45f85bfef9d6/jbacter00408-0208.png)
![679](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5b/276494/9d52879a5702/jbacter00408-0209.png)
![680](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5b/276494/dee056c35454/jbacter00408-0210.png)
![681](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5b/276494/1da5679938db/jbacter00408-0211.png)
![682](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5b/276494/3bd181a6e7b5/jbacter00408-0212.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHEER S., TCHEN T. T. Effect of mitomycin C on the synthesis of induced bita-galactosidase in E. coli. Biochem Biophys Res Commun. 1962 Oct 17;9:271–274. doi: 10.1016/0006-291x(62)90072-4. [DOI] [PubMed] [Google Scholar]
- CUMMINGS D. J. MACROMOLECULAR SYNTHESIS DURING SYNCHRONOUS GROWTH OF ESCHERICHIA COLI B/R. Biochim Biophys Acta. 1965 Feb 8;95:341–350. doi: 10.1016/0005-2787(65)90498-3. [DOI] [PubMed] [Google Scholar]
- Coles N. W., Gross R. The effect of mitomycin C on the induced synthesis of penicillinase in Staphylococcus aureus. Biochem Biophys Res Commun. 1965 Jul 26;20(3):366–371. doi: 10.1016/0006-291x(65)90374-8. [DOI] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FENWICK M. L. The influence of poliovirus infection of RNA synthesis in mammalian cells. Virology. 1963 Mar;19:241–249. doi: 10.1016/0042-6822(63)90061-8. [DOI] [PubMed] [Google Scholar]
- GRULA M. M., GRULA E. A. Reversal of mitomycin c-induced growth and division inhibition in a species of Erwinia. Nature. 1962 Sep 15;195:1126–1127. doi: 10.1038/1951126a0. [DOI] [PubMed] [Google Scholar]
- KERSTEN H., KERSTEN W., LEOPOLD G., SCHNIEDERS B. EFFECT OF MITOMYCIN C ON DNAASE AND RNA IN ESCHERICHIA COLI. Biochim Biophys Acta. 1964 Mar 23;80:521–523. doi: 10.1016/0926-6550(64)90159-8. [DOI] [PubMed] [Google Scholar]
- KERSTEN H., KERSTEN W. ZUR WIRKUNGSWEISE VON MITOMYCIN C, II. EINFLUSS VON MITOMYCIN C, CHLORAMPHENICOL UND MG2 AUF DEN RNA- UND DNA-STOFFWECHSEL IN BAKTERIEN. Hoppe Seylers Z Physiol Chem. 1963;334:141–153. doi: 10.1515/bchm2.1963.334.1.141. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- NAKADA D. Thymine starvation and beta-galactosidase synthesis. Biochim Biophys Acta. 1962 Apr 2;55:505–511. doi: 10.1016/0006-3002(62)90983-6. [DOI] [PubMed] [Google Scholar]
- NAKATA Y., NAKATA K., SAKAMOTO Y. On the action mechanism of mitomycin C. Biochem Biophys Res Commun. 1961 Dec 20;6:339–343. doi: 10.1016/0006-291x(61)90141-3. [DOI] [PubMed] [Google Scholar]
- RACHMELER M., GERHART J., ROSNER J. Limited thymidine uptake in Escherichia coli due to an inducible thymidine phosphorylase. Biochim Biophys Acta. 1961 Apr 29;49:222–225. doi: 10.1016/0006-3002(61)90888-5. [DOI] [PubMed] [Google Scholar]
- REICH E., SHATKIN A. J., TATUM E. L. Bacteriocidal action of mitomycin C. Biochim Biophys Acta. 1961 Oct 14;53:132–149. doi: 10.1016/0006-3002(61)90800-9. [DOI] [PubMed] [Google Scholar]
- SEKIGUCHI M., TAKAGI Y. Effect of mitomycin C on the synthesis of bacterial and viral deoxyribonucleic acid. Biochim Biophys Acta. 1960 Jul 15;41:434–443. doi: 10.1016/0006-3002(60)90040-8. [DOI] [PubMed] [Google Scholar]
- SUZUKI H., KILGORE W. W. MITOMYCIN C: EFFECT ON RIBOSOMES OF ESCHERICHIA COLI. Science. 1964 Dec 18;146(3651):1585–1587. doi: 10.1126/science.146.3651.1585. [DOI] [PubMed] [Google Scholar]
- SZYBALSKI W., IYER V. N. CROSSLINKING OF DNA BY ENZYMATICALLY OR CHEMICALLY ACTIVATED MITOMYCINS AND PORFIROMYCINS, BIFUNCTIONALLY "ALKYLATING" ANTIBIOTICS. Fed Proc. 1964 Sep-Oct;23:946–957. [PubMed] [Google Scholar]
- Suzuki H., Pangborn J., Kilgore W. W. Filamentous cells of Escherichia coli formed in the presence of mitomycin. J Bacteriol. 1967 Feb;93(2):683–688. doi: 10.1128/jb.93.2.683-688.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]