Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 Mar;93(3):886–893. doi: 10.1128/jb.93.3.886-893.1967

Regulation of Autotrophic and Heterotrophic Carbon Dioxide Fixation in Hydrogenomonas facilis1

Bruce A McFadden a,2, Chang-Chu L Tu a
PMCID: PMC276532  PMID: 4381635

Abstract

After growth on various carbon sources, sonic extracts of Hydrogenomonas facilis contained ribulosediphosphate (RuDP) carboxylase and phosphoribulokinase (Ru5-P kinase). After very short sonic treatment, a reductive adenosine triphosphate (ATP)-dependent incorporation of 14CO2 was also detectable. Reduced nicotinamide adenine dinucleotide (NADH2) served as reductant 30-fold more effectively than reduced nicotinamide adenine dinucleotide phosphate (NADPH2). Adenosine 5′-phosphate (AMP) and adenosine 5′-pyrophosphate (ADP) inhibited Ru5-P kinase and NADH2-, ATP-dependent CO2 fixation. The levels and duration of CO2 fixation suggested that it is a cyclic process. The requirement of reduced pyridine nucleotide and ATP and the sensitivity of fixation to AMP and ADP support the conjecture that it occurs via the Calvin cycle. After thorough study of variables affecting catalysis, specific activities (millimicromoles of substrate disappearing per milligram of protein) at 30 C were determined for RuDP carboxylase (C), Ru5-P kinase (K) and ATP-, NADH2- dependent CO2 fixation (CO2 F) after growth autotrophically on fructose, glucose, ribose, glutamate, lactate, succinate, and acetate. Values for these growth modes were, respectively—for C: 67.3, 51.1, 51.4, 24.6, 2.05, 10.2, 2.25, 1.4; for K: 24.7, 24.0, 23.2, 14.2, 12.8, 12.9, 13.4, 2.8; and for CO2 F: 4.54, 4.83, 3.10, 2.87, 0.85, 1.51, 0.24, 0.41. The qualitative parallel between values for RuDP carboxylase and CO2 fixation suggests that one major control point in fixation is the step catalyzed by RuDP carboxylase.

Full text

PDF
886

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATKINSON D. E., MCFADDEN B. A. The biochemistry of Hydrogenomonas. V. Factors affecting autotrophic fixation of carbon dioxide. Arch Biochem Biophys. 1957 Jan;66(1):16–22. doi: 10.1016/0003-9861(57)90533-7. [DOI] [PubMed] [Google Scholar]
  2. Aleem M. I. Generation of reducing power in chemosynthesis. 3. Energy-linked reduction of pyridine nucleotides in Thiobacillus novellus. J Bacteriol. 1966 Feb;91(2):729–736. doi: 10.1128/jb.91.2.729-736.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aleem M. I. Path of carbon and assimilatory power in chemosynthetic bacteria. I. Nitrobacter agilis. Biochim Biophys Acta. 1965 Aug 24;107(1):14–28. doi: 10.1016/0304-4165(65)90384-3. [DOI] [PubMed] [Google Scholar]
  4. Atkinson D. E. Biological feedback control at the molecular level. Science. 1965 Nov 12;150(3698):851–857. doi: 10.1126/science.150.3698.851. [DOI] [PubMed] [Google Scholar]
  5. BERGMANN F. H., TOWNE J. C., BURRIS R. H. Assimilation of carbon dioxide by hydrogen bacteria. J Biol Chem. 1958 Jan;230(1):13–24. [PubMed] [Google Scholar]
  6. CALVIN M. The path of carbon in photosynthesis. Science. 1962 Mar 16;135(3507):879–889. doi: 10.1126/science.135.3507.879. [DOI] [PubMed] [Google Scholar]
  7. HANES C. S., ISHERWOOD F. A. Separation of the phosphoric esters on the filter paper chromatogram. Nature. 1949 Dec 31;164(4183):1107-12, illust. doi: 10.1038/1641107a0. [DOI] [PubMed] [Google Scholar]
  8. HORECKER B. L. PATHWAYS OF CARBOHYDRATE METABOLISM AND THEIR PHYSIOLOGICAL SIGNIFICANCE. J Chem Educ. 1965 May;42:244–253. doi: 10.1021/ed042p244. [DOI] [PubMed] [Google Scholar]
  9. JOHNSON E. J., PECK H. D., Jr COUPLING OF PHOSPHORYLATION AND CARBON DIOXIDE FIXATION IN EXTRACTS OF THIOBACILLUS THIOPARUS. J Bacteriol. 1965 Apr;89:1041–1050. doi: 10.1128/jb.89.4.1041-1050.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson E. J. Occurrence of the adenosine monophosphate inhibition of carbon dioxide fixation in photosynthetic and chemosynthetic autotrophs. Arch Biochem Biophys. 1966 Apr;114(1):178–183. doi: 10.1016/0003-9861(66)90319-5. [DOI] [PubMed] [Google Scholar]
  11. MCFADDEN B. A., HOMANN H. R. CHARACTERISTICS AND INTERMEDIATES OF SHORT-TERM C-14-O-2 INCORPORATION DURING RIBOSE OXIDATION BY HYDROGENOMONAS FACILIS. J Bacteriol. 1965 Mar;89:839–847. doi: 10.1128/jb.89.3.839-847.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McFADDEN B. A. Some products of C1402 fixation by Hydrogenomonas facilis. J Bacteriol. 1959 Mar;77(3):339–343. doi: 10.1128/jb.77.3.339-343.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McFadden B. A., Tu C. C. Ribulose diphosphate carboxylase and CO2 incorporation in extracts of Hydrogenomonas facilis. Biochem Biophys Res Commun. 1965 Jun 9;19(6):728–733. doi: 10.1016/0006-291x(65)90318-9. [DOI] [PubMed] [Google Scholar]
  14. PONTREMOLI S., DE FLORA A., GRAZI E., MANGIAROTTIG, BONSIGNORE A., HORECKER B. L. Crystalline D-gluconate 6-phosphate dehydrogenase. J Biol Chem. 1961 Nov;236:2975–2980. [PubMed] [Google Scholar]
  15. PONTREMOLI S., MANGIAROTTI G. A simple method for the preparation of D-ribulose 5-phosphate. J Biol Chem. 1962 Mar;237:643–645. [PubMed] [Google Scholar]
  16. SCHATZ A., BOVELL C., Jr Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J Bacteriol. 1952 Jan;63(1):87–98. doi: 10.1128/jb.63.1.87-98.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TYSZKIEWICZ E. An improved solvent system for the paper chromatography of phosphate esters. Anal Biochem. 1962 Feb;3:164–166. doi: 10.1016/0003-2697(62)90107-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES