Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 Mar;93(3):920–929. doi: 10.1128/jb.93.3.920-929.1967

Structural Transitions in Ribonucleic Acid During Ribosome Development

Paul S Sypherd 1, Bradford S Fansler 1
PMCID: PMC276536  PMID: 5337839

Abstract

Amino acid deprivation of a “relaxed” auxotroph of Escherichia coli results in the accumulation of protein-deficient, immature ribosomes (“relaxed particles”). The ribonucleic acid (RNA) of these particles was shown to differ from mature ribosomal RNA in both sedimentation characteristics and in elution from columns of methylated albumin-keiselguhr. When relaxed particles were allowed to become converted to mature ribosomes, the unique properties of the RNA were lost, and this RNA became indistinguishable from mature RNA. The conversion of relaxed particles to ribosomes did not involve degradation and resynthesis of RNA. It is concluded that ribosomal RNA undergoes a configurational transition during ribosome development, and that this transition is not the result of changes in the primary structure of the RNA.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOEDTKER H., MOLLER W., KLEMPERER E. On the validity of the evidence for sub-units of high molecular weight ribonucleic acids. Nature. 1962 May 5;194:444–446. doi: 10.1038/194444a0. [DOI] [PubMed] [Google Scholar]
  2. BOREK E., RYAN A. Studies on a mutant of Escherichia coli with unbalanced ribonucleic acid synthesis. II. The concomitance of ribonucleic acid synthesis with resumed protein synthesis. J Bacteriol. 1958 Jan;75(1):72–76. doi: 10.1128/jb.75.1.72-76.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DUBIN D. T., ELKORT A. T. SOME ABNORMAL PROPERTIES OF CHLORAMPHENICOL RNA. J Mol Biol. 1964 Dec;10:508–518. doi: 10.1016/s0022-2836(64)80069-3. [DOI] [PubMed] [Google Scholar]
  4. DUBIN D. T. SOME EFFECT OF STREPTOMYCIN ON RNA METABOLISM IN ESCHERICHIA COLI. J Mol Biol. 1964 May;8:749–767. doi: 10.1016/s0022-2836(64)80122-4. [DOI] [PubMed] [Google Scholar]
  5. Dubin D. T., Elkort A. T. A direct demonstration of the metabolic turnover of chloramphenicol RNA. Biochim Biophys Acta. 1965 Jun 8;103(2):355–358. doi: 10.1016/0005-2787(65)90180-2. [DOI] [PubMed] [Google Scholar]
  6. FLEISSNER E., BOREK E. STUDIES ON THE ENZYMATIC METHYLATION OF SOLUBLE RNA. I. METHYLATION OF THE S-RNA POLYMER. Biochemistry. 1963 Sep-Oct;2:1093–1100. doi: 10.1021/bi00905a032. [DOI] [PubMed] [Google Scholar]
  7. GORDON J., BOMAN H. G. STUDIES ON MICROBIAL RNA.II. TRANSFER OF METHYL GROUPS FROM METHIONINE TO THE RNA OF A RIBONUCLEOPROTEIN PARTICLE. J Mol Biol. 1964 Sep;9:638–653. doi: 10.1016/s0022-2836(64)80172-8. [DOI] [PubMed] [Google Scholar]
  8. HERSKOVITS T. T., SINGER S. J., GEIDUSCHEK E. P. Nonaqueous solutions of DNA. Denaturation in methanol and ethanol. Arch Biochem Biophys. 1961 Jul;94:99–114. doi: 10.1016/0003-9861(61)90016-9. [DOI] [PubMed] [Google Scholar]
  9. KONO M., OTAKA E., OSAWA S. CHANGES IN SEDIMENTATION PROPERTIES OF RIBOSOMAL RIBONUCLEIC ACIDS DURING THE COURSE OF RIBOSOME FORMATION IN ESCHERICHIA COLI. Biochim Biophys Acta. 1964 Dec 16;91:612–618. doi: 10.1016/0926-6550(64)90009-x. [DOI] [PubMed] [Google Scholar]
  10. LEVINE L., GORDON J. A., JENCKS W. P. The relationship of structure to the effectiveness of denaturing agents for deoxyribonucleic acid. Biochemistry. 1963 Jan-Feb;2:168–175. doi: 10.1021/bi00901a030. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lindahl T., Adams A., Fresco J. R. Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc Natl Acad Sci U S A. 1966 Apr;55(4):941–948. doi: 10.1073/pnas.55.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lindahl T., Adams A. Native and renatured transfer ribonucleic acid. Science. 1966 Apr 22;152(3721):512–514. doi: 10.1126/science.152.3721.512. [DOI] [PubMed] [Google Scholar]
  14. Lindigkeit R., Handschack W. Some properties of ribonucleic acid obtained from ribosomal precursors of Escherichia coli. Biochim Biophys Acta. 1965 Jun 8;103(2):241–251. doi: 10.1016/0005-2787(65)90165-6. [DOI] [PubMed] [Google Scholar]
  15. MANDEL L. R., BOREK E. THE NATURE OF THE RNA SYNTHESIZED DURING CONDITIONS OF UNBALANCED GROWTH IN E. COLI K12W-6. Biochemistry. 1963 May-Jun;2:560–566. doi: 10.1021/bi00903a030. [DOI] [PubMed] [Google Scholar]
  16. MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
  17. Morris D. W., DeMoss J. A. Role of aminoacyl-transfer ribonucleic acid in the regulation of ribonucleic acid synthesis in Escherichia coli. J Bacteriol. 1965 Dec;90(6):1624–1631. doi: 10.1128/jb.90.6.1624-1631.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. NAKADA D., ANDERSON I. A., MAGASANIK B. FATE OF THE RIBOSOMAL RNA PRODUCED BY A "RELAXED" MUTANT OF ESCHERICHIA COLI. J Mol Biol. 1964 Aug;9:472–488. doi: 10.1016/s0022-2836(64)80220-5. [DOI] [PubMed] [Google Scholar]
  19. NEIDHARDT F. C., EIDLIC L. Characterization of the RNA formed under conditions of relaxed amino acid control in Escherichia coli. Biochim Biophys Acta. 1963 Mar 26;68:380–388. doi: 10.1016/0006-3002(63)90159-8. [DOI] [PubMed] [Google Scholar]
  20. NISHIMURA S., NOVELLI G. D. Resistance of S-RNA to ribonucleases in the presence of magnesium ion. Biochem Biophys Res Commun. 1963 May 3;11:161–165. doi: 10.1016/0006-291x(63)90327-9. [DOI] [PubMed] [Google Scholar]
  21. Nakada D. Formation of ribosomes by a "relaxed" mutant of Escherichia coli. J Mol Biol. 1965 Jul;12(3):695–725. doi: 10.1016/s0022-2836(65)80322-9. [DOI] [PubMed] [Google Scholar]
  22. SUEOKA N., CHENG T. Y. Fractionation of nucleic acids with the methylated albumin column. J Mol Biol. 1962 Mar;4:161–172. doi: 10.1016/s0022-2836(62)80048-5. [DOI] [PubMed] [Google Scholar]
  23. SYPHERD P. S. ACCUMULATION OF RIBONUCLEOPROTEIN PARTICLES IN A RELAXED MUTANT OF ESCHERICHIA COLI. J Bacteriol. 1965 Aug;90:403–410. doi: 10.1128/jb.90.2.403-410.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SYPHERD P. S. FORMATION OF RIBOSOMES FROM PRECURSOR RIBONUCLEOPROTEIN PARTICLES. J Bacteriol. 1965 Aug;90:411–417. doi: 10.1128/jb.90.2.411-417.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sypherd P. S., Strauss N. CHLORAMPHENICOL-PROMOTED REPRESSION OF beta-GALACTOSIDASE SYNTHESIS IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1963 Mar;49(3):400–407. doi: 10.1073/pnas.49.3.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. TURNOCK G., WILD D. G. THE SYNTHESIS OF RIBOSOMES BY A MUTANT OF ESCHERICHIA COLI. Biochem J. 1965 Jun;95:597–607. doi: 10.1042/bj0950597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. YANKOFSKY S. A., SPIEGELMAN S. Distinct cistrons for the two ribosomal RNA components. Proc Natl Acad Sci U S A. 1963 Apr;49:538–544. doi: 10.1073/pnas.49.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. ZUBAY G., MARCIELLO R. A chemical method for studying the detailed secondary structure of RNA. Biochem Biophys Res Commun. 1963 Apr 23;11:79–82. doi: 10.1016/0006-291x(63)90069-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES