Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 May;93(5):1544–1550. doi: 10.1128/jb.93.5.1544-1550.1967

Changes in Adenine Nucleotides of Intact Chromatium D Produced by Illumination

Jane Gibson a,1, Sigehiro Morita a,2
PMCID: PMC276647  PMID: 6025442

Abstract

The total adenine nucleotide content of suspensions of Chromatium D averaged 14 nmoles/mg of dry weight. Of this, one-third to one-half was adenosine triphosphate (ATP), even in suspensions incubated in darkness. Illumination with high intensities caused a rise in ATP and a drop mainly in adenosine diphosphate, the new steady state being reached in 5 to 15 sec at room temperature. The dark steady state was re-established 15 to 30 sec after returning the suspensions to darkness. The rates of these changes were little affected by the presence of electron donors or CO2, though their magnitude was reduced when substrates were added to starved suspensions. At limiting light intensities, complex kinetics characterized the transition from both dark to light and light to dark, and, at lower light intensities, more ATP was produced in suspensions supplemented with electron donors than in starved cells. The results show that photophosphorylation accompanying cyclic electron flow occurred in intact cells, and suggest that noncyclic phosphorylation can also occur.

Full text

PDF
1544

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNON D. I. Conversion of light into chemical energy in photosynthesis. Nature. 1959 Jul 4;184:10–21. doi: 10.1038/184010a0. [DOI] [PubMed] [Google Scholar]
  2. AVRON M. Light-dependent adenosine triphosphatase in chloroplasts. J Biol Chem. 1962 Jun;237:2011–2017. [PubMed] [Google Scholar]
  3. Baltscheffsky H., Von Stedingk L. V., Heldt H. W., Klingenberg M. Inorganic pyrophosphate: formation in bacterial photophosphorylation. Science. 1966 Sep 2;153(3740):1120–1122. doi: 10.1126/science.153.3740.1120. [DOI] [PubMed] [Google Scholar]
  4. CHANCE B., NISHIMURA M., ROY S. B., SCHLEYER H. CYTOCHROME-CHLOROPHYLL INTERACTION: THE NATURE OF THE DARK REACTION. Biochem Z. 1963;338:654–668. [PubMed] [Google Scholar]
  5. CHANCE B., OLSON J. M. Primary metabolic events associated with photosynthesis. Arch Biochem Biophys. 1960 May;88:54–58. doi: 10.1016/0003-9861(60)90195-8. [DOI] [PubMed] [Google Scholar]
  6. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  7. ESTABROOK R. W., MAITRA P. K. A fluorimetric method for the quantitative microanalysis of adenine and pyridine nucleotides. Anal Biochem. 1962 May;3:369–382. doi: 10.1016/0003-2697(62)90065-9. [DOI] [PubMed] [Google Scholar]
  8. HOLT S. C., MARR A. G. LOCATION OF CHLOROPHYLL IN RHODOSPIRILLUM RUBRUM. J Bacteriol. 1965 May;89:1402–1412. doi: 10.1128/jb.89.5.1402-1412.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HUGHES D. E., CONTI S. F., FULLER R. C. INORGANIC POLYPHOSPHATE METABOLISM IN CHLOROBIUM THIOSULFATOPHILUM. J Bacteriol. 1963 Mar;85:577–584. doi: 10.1128/jb.85.3.577-584.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hind G., Jagendorf A. T. SEPARATION OF LIGHT AND DARK STAGES IN PHOTOPHOSPHORYLATION. Proc Natl Acad Sci U S A. 1963 May;49(5):715–722. doi: 10.1073/pnas.49.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holt S. C., Conti S. F., Fuller R. C. Photosynthetic Apparatus in the Green Bacterium Chloropseudomonas ethylicum. J Bacteriol. 1966 Jan;91(1):311–323. doi: 10.1128/jb.91.1.311-323.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson E. J. Occurrence of the adenosine monophosphate inhibition of carbon dioxide fixation in photosynthetic and chemosynthetic autotrophs. Arch Biochem Biophys. 1966 Apr;114(1):178–183. doi: 10.1016/0003-9861(66)90319-5. [DOI] [PubMed] [Google Scholar]
  13. Morita S., Edwards M., Gibson J. Influence of metabolic conditions on light-induced absorbancy changes in Chromatium D. Biochim Biophys Acta. 1965 Sep 27;109(1):45–58. doi: 10.1016/0926-6585(65)90089-0. [DOI] [PubMed] [Google Scholar]
  14. NISHIMURA M. Studies on bacterial photophosphorylation. I. Kinetics of photophosphorylation in Rhodospirillum rubrum chromatophores by flashing light. Biochim Biophys Acta. 1962 Feb 12;57:88–95. doi: 10.1016/0006-3002(62)91082-x. [DOI] [PubMed] [Google Scholar]
  15. OLSON J. M., CHANCE B. Oxidation-reduction reactions in the photosynthetic bacterium Chromatium. I. Absorption spectrum changes in whole cells. Arch Biochem Biophys. 1960 May;88:26–39. doi: 10.1016/0003-9861(60)90193-4. [DOI] [PubMed] [Google Scholar]
  16. VERNON L. P., AVRON M. PHOTOSYNTHESIS. Annu Rev Biochem. 1965;34:269–296. doi: 10.1146/annurev.bi.34.070165.001413. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES