Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 May;93(5):1588–1597. doi: 10.1128/jb.93.5.1588-1597.1967

Transduction by Bacteriophage P22 in Nonsmooth Mutants of Salmonella typhimurium

P Gemski Jr a,1, B A D Stocker a
PMCID: PMC276654  PMID: 5337845

Abstract

The general transducing phage P22 attacks only smooth (S) Salmonella with O antigen 12, determined by the oligosaccharide repeating unit constituting the distal part of the somatic lipopolysaccharide (LPS) side chain; non-S mutants, whose LPS contain few or no O repeating units, appear to be resistant. Auxotrophic non-S mutants of Salmonella typhimurium LT2 were tested as transductional recipients. Some transductants (0.5 to 5% as many as from S recipients) were obtained from most semirough recipients, either of class D (presumed leaky rouA mutants) or of a class due to mutation near his (presumed leaky rouB mutants), and from recipients lacking uridine diphosphogalactose epimerase or phosphomannose isomerase. Transductants were not obtained from several rouA, rouB, “heptose-negative,” and glucose-1-transferase mutants, nor from most semirough class C mutants, whose LPS side chains each bear a single O oligosaccharide unit. Most transductants evoked from non-S recipients by temperate (c+) phage P22 were nonlysogenic, and virulent P22.c2 phage was about as effective as P22.c+ in transduction to non-S recipients; probably all P22 transducing particles neither lysogenize nor kill. The extended-host-range mutant P22h gave qualitatively similar results,but evoked 5- to 30-fold more transductants from some non-S recipients than did P22. Probably, the LPS of non-S mutants susceptible to transduction contains a few O-specific oligosaccharide units, conferring a slight ability to adsorb P22 and a greater ability to adsorb P22h.

Full text

PDF
1588

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKMANN I., SUBBAIAH T. V., STOCKER B. A. ROUGH MUTANTS OF SALMONELLA TYPHIMURIUM. II. SEROLOGICAL AND CHEMICAL INVESTIGATIONS. Nature. 1964 Mar 28;201:1299–1301. doi: 10.1038/2011299a0. [DOI] [PubMed] [Google Scholar]
  2. BRANDIS H. Untersuchungen über Bakteriophagen, die auf rauhe Bakterienstämme wirken. Zentralbl Bakteriol Orig. 1956 Apr;165(5-7):305–312. [PubMed] [Google Scholar]
  3. BRINTON C. C., Jr, GEMSKI P., Jr, CARNAHAN J. A NEW TYPE OF BACTERIAL PILUS GENETICALLY CONTROLLED BY THE FERTILITY FACTOR OF E. COLI K 12 AND ITS ROLE IN CHROMOSOME TRANSFER. Proc Natl Acad Sci U S A. 1964 Sep;52:776–783. doi: 10.1073/pnas.52.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CALLOW B. R. A new phage-typing scheme for Salmonella typhi-murium. J Hyg (Lond) 1959 Sep;57:346–359. doi: 10.1017/s0022172400020209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FUKASAWA T., NIKAIDO H. Formation of phage receptors induced by galactose in a galactose-sensitive mutant of Salmonella. Virology. 1960 Jun;11:508–510. doi: 10.1016/0042-6822(60)90093-3. [DOI] [PubMed] [Google Scholar]
  6. FUKASAWA T., NIKAIDO H. Galactose-sensitive mutants of Salmonella. Nature. 1959 Oct 10;184(Suppl 15):1168–1169. doi: 10.1038/1841168a0. [DOI] [PubMed] [Google Scholar]
  7. JOHNSON E. M., KRAUSKOPF B., BARON L. S. GENETIC MAPPING OF VI AND SOMATIC ANTIGENIC DETERMINANTS IN SALMONELLA. J Bacteriol. 1965 Aug;90:302–308. doi: 10.1128/jb.90.2.302-308.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LEVINE M. Mutations in the temperate phage P22 and lysogeny in Salmonella. Virology. 1957 Feb;3(1):22–41. doi: 10.1016/0042-6822(57)90021-1. [DOI] [PubMed] [Google Scholar]
  9. LURIA S. E., FRASER D. K., ADAMS J. N., BURROUS J. W. Lysogenization, transduction and genetic recombination in bacteria. Cold Spring Harb Symp Quant Biol. 1958;23:71–82. doi: 10.1101/sqb.1958.023.01.010. [DOI] [PubMed] [Google Scholar]
  10. NAIDE Y., NIKAIDO H., MAEKELAE P. H., WILKINSON R. G., STOCKER B. A. SEMIROUGH STRAINS OF SALMONELLA. Proc Natl Acad Sci U S A. 1965 Jan;53:147–153. doi: 10.1073/pnas.53.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. NIKAIDO H., MIKAIDO K., SUBBAIAH T. V., STOCKER B. A. ROUGH MUTANTS OF SALMONELLA TYPHIMURIUM. III. ENZYMATIC SYNTHESIS OF NUCLEOTIDE-SUGAR COMPOUNDS. Nature. 1964 Mar 28;201:1301–1302. doi: 10.1038/2011301a0. [DOI] [PubMed] [Google Scholar]
  12. Nikaido H., Naide Y., Mäkelä P. H. Biosynthesis of O-antigenic polysaccharides in Salmonella. Ann N Y Acad Sci. 1966 Jun 30;133(2):299–314. doi: 10.1111/j.1749-6632.1966.tb52373.x. [DOI] [PubMed] [Google Scholar]
  13. Osborn M. J. Biosynthesis and structure of the core region of the lipopolysaccharide in Salmonella typhimurium. Ann N Y Acad Sci. 1966 Jun 30;133(2):375–383. doi: 10.1111/j.1749-6632.1966.tb52377.x. [DOI] [PubMed] [Google Scholar]
  14. SANDERSON K. E., DEMEREC M. THE LINKAGE MAP OF SALMONELLA TYPHIMURIUM. Genetics. 1965 Jun;51:897–913. doi: 10.1093/genetics/51.6.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. STOCKER B. A., STAUB A. M., TENELLI R., KOPACKA B. [Immunochemical study on Salmonella. VI. Study of antigen 1 present on 2 Salmonella of the B and E4 groups]. Ann Inst Pasteur (Paris) 1960 Apr;98:505–523. [PubMed] [Google Scholar]
  16. STOCKER B. A. Transduction of flagellar characters in Salmonella. J Gen Microbiol. 1953 Dec;9(3):410–433. doi: 10.1099/00221287-9-3-410. [DOI] [PubMed] [Google Scholar]
  17. SUBBAIAH T. V., STOCKER B. A. ROUGH MUTANTS OF SALMONELLA TYPHIMURIUM. I. GENETICS. Nature. 1964 Mar 28;201:1298–1299. doi: 10.1038/2011298a0. [DOI] [PubMed] [Google Scholar]
  18. Stocker B. A., Wilkinson R. G., Mäkelä P. H. Genetic aspects of biosynthesis and structure of Salmonella somatic polysaccharide. Ann N Y Acad Sci. 1966 Jun 30;133(2):334–348. doi: 10.1111/j.1749-6632.1966.tb52375.x. [DOI] [PubMed] [Google Scholar]
  19. YAMAMOTO N., ANDERSON T. F. Genomic masking and recombination between serologically unrelated phages P22 and P221. Virology. 1961 Aug;14:430–439. doi: 10.1016/0042-6822(61)90334-8. [DOI] [PubMed] [Google Scholar]
  20. Yamamoto N., Weir M. L. Genetic relationships between serologically unrelated bacteriophages P22 and P221b. Virology. 1966 Jan;28(1):168–169. doi: 10.1016/0042-6822(66)90319-9. [DOI] [PubMed] [Google Scholar]
  21. ZELEZNICK L. D., ROSEN S. M., SALTMARSH-ANDREW M., OSBORN M. J., HORECKER B. L. BIOSYNTHESIS OF BACTERIAL LIPOPOLYSACCHARIDE, IV. ENZYMATIC INCORPORATION OF MANNOSE, RHAMNOSE, AND GALACTOSE IN A MUTANT STRAIN OF SALMONELLA TYPHIMURIUM. Proc Natl Acad Sci U S A. 1965 Jan;53:207–214. doi: 10.1073/pnas.53.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ZINDER N. D. Infective heredity in bacteria. Cold Spring Harb Symp Quant Biol. 1953;18:261–269. doi: 10.1101/sqb.1953.018.01.037. [DOI] [PubMed] [Google Scholar]
  23. ZINDER N. D., LEDERBERG J. Genetic exchange in Salmonella. J Bacteriol. 1952 Nov;64(5):679–699. doi: 10.1128/jb.64.5.679-699.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES