Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 Oct;94(4):966–971. doi: 10.1128/jb.94.4.966-971.1967

Role of S-Adenosylmethionine in Methionine Biosynthesis in Yeast

J L Botsford 1, L W Parks 1
PMCID: PMC276763  PMID: 4293082

Abstract

Extracts of Saccharomyces cerevisiae were used to develop a cell-free system capable of converting the β-carbon of serine into the methyl group of methionine. No requirement for either S-adenosylmethionine or S-adenosylhomocysteine could be demonstrated for net methionine biosynthesis. Growth of the cells in B12 did not affect the reaction. The mechanism for the methylation of homocysteine in yeast appears to be similar to the non-B12 system in Escherichia coli.

Full text

PDF
966

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cauthen S. E., Foster M. A., Woods D. D. Methionine synthesis by extracts of Salmonella typhimurium. Biochem J. 1966 Feb;98(2):630–635. doi: 10.1042/bj0980630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DUERRE J. A. Preparation and properties of S-adenosyl-L-homocysteine, S-adenosyl-L-homocysteine sulfoxide and S-ribosyl-L-homocysteine. Arch Biochem Biophys. 1962 Jan;96:70–76. doi: 10.1016/0003-9861(62)90453-8. [DOI] [PubMed] [Google Scholar]
  3. DUERRE J. A., SCHLENK F. Formation and metabolism of S-adenosyl-L-homocysteine in yeast. Arch Biochem Biophys. 1962 Mar;96:575–579. doi: 10.1016/0003-9861(62)90339-9. [DOI] [PubMed] [Google Scholar]
  4. EATON N. R. New press for disruption of microorganisms. J Bacteriol. 1962 Jun;83:1359–1360. doi: 10.1128/jb.83.6.1359-1360.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foster M. A., Tejerina G., Guest J. R., Woods D. D. Two enzymic mechanisms for the methylation of homocysteine by extracts of Escherichia coli. Biochem J. 1964 Sep;92(3):476–488. doi: 10.1042/bj0920476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GAWEL L. J., TURNER J. R., PARKS L. W. Accumulation of S-adenosylmethionine by microorganisms. J Bacteriol. 1962 Mar;83:497–499. doi: 10.1128/jb.83.3.497-499.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guest J. R., Foster M. A., Woods D. D. Methyl derivatives of folic acid as intermediates in the methylation of homocysteine by Escherichia coli. Biochem J. 1964 Sep;92(3):488–496. doi: 10.1042/bj0920488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guest J. R., Friedman S., Foster M. A., Tejerina G., Woods D. D. Transfer of the methyl group from N5-methyltetrahydrofolates to homocysteine in Escherichia coli. Biochem J. 1964 Sep;92(3):497–504. doi: 10.1042/bj0920497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KISLIUK R. L., WOODS D. D. Interrelationships between folic acid and cobalamin in the synthesis of methionine by extracts of Escherichia coli. Biochem J. 1960 Jun;75:467–477. doi: 10.1042/bj0750467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOUGHLIN R. E., ELFORD H. L., BUCHANAN J. M. ENZYMATIC SYNTHESIS OF THE METHYL GROUP OF METHIONINE. VII. ISOLATION OF A COBALAMIN-CONTAINING TRANSMETHYLASE (5-METHYLTETRAHYDRO-FOLATE-HOMOCYSTEINE) FROM MAMMALIAN LIVER. J Biol Chem. 1964 Sep;239:2888–2895. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MORNINGSTAR J. F., KISLIUK R. L. INTERRELATIONS BETWEEN TWO PATHWAYS OF METHIONINE BIOSYNTHESIS IN AEROBACTER AEROGENES. J Gen Microbiol. 1965 Apr;39:43–51. doi: 10.1099/00221287-39-1-43. [DOI] [PubMed] [Google Scholar]
  13. PARKS L. W., SCHLENK F. The stability and hydrolysis of S-adenosylmethionine; isolation of S-ribosylmethionine. J Biol Chem. 1958 Jan;230(1):295–305. [PubMed] [Google Scholar]
  14. PIGG C. J., SORSOLI W. A., PARKS L. W. INDUCTION OF THE METHIONINE-ACTIVATING ENZYME IN SACCHAROMYCES CEREVISIAE. J Bacteriol. 1964 Apr;87:920–923. doi: 10.1128/jb.87.4.920-923.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PIGG C. J., SPENCE K. D., PARKS L. W. Methionine biosynthesis in yeast. Arch Biochem Biophys. 1962 Jun;97:491–496. doi: 10.1016/0003-9861(62)90112-1. [DOI] [PubMed] [Google Scholar]
  16. SCHERTEL M. E., BOEHNE J. W., LIBBY D. A. FOLIC ACID DERIVATIVES IN YEAST. J Biol Chem. 1965 Jul;240:3154–3158. [PubMed] [Google Scholar]
  17. SCHLENK F., DEPALMA R. E. The formation of S-adenosylmethionine in yeast. J Biol Chem. 1957 Dec;229(2):1037–1050. [PubMed] [Google Scholar]
  18. SHAPIRO S. K., YPHANTIS D. A., ALMENAS A. BIOSYNTHESIS OF METHIONINE IN SACCHAROMYCES CEREVISIAE. PARTIAL PURIFICATION AND PROPERTIES OF S-ADENOSYLMETHIONINE: HOMOCYSTEINE METHYLTRANSFERASE. J Biol Chem. 1964 May;239:1551–1556. [PubMed] [Google Scholar]
  19. SVIHLA G., SCHLENK F. Localization of S-adenosylmethionine in Candida utilis by ultraviolet microscopy. J Bacteriol. 1959 Oct;78:500–505. doi: 10.1128/jb.78.4.500-505.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SZULMAJSTER J., WOODS D. D. The synthesis of methionine from homocysteine by enzymic extracts of Escherichia coli. Biochem J. 1960 Apr;75:3–12. doi: 10.1042/bj0750003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WEISSBACH H., PETERKOFSKY A., REDFIELD B. G., DICKERMAN H. STUDIES ON THE TERMINAL REACTION IN THE BIOSYNTHESIS OF METHIONINE. J Biol Chem. 1963 Oct;238:3318–3324. [PubMed] [Google Scholar]
  22. Wagner C., Lusty S. M., Jr, Kung H. F., Rogers N. L. Preparation and properties of trimethylsulfonium-tetrahydrofolate methyltransferase. J Biol Chem. 1967 Mar 25;242(6):1287–1293. [PubMed] [Google Scholar]
  23. Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES