Abstract
Oxidation of pipecolate to Δ1-piperideine-6-carboxylate is catalyzed by pipecolate oxidase, an inducible, membrane-bound dehydrogenase associated with the electron transport components of Pseudomonas putida P2. From the oxidase, we obtained a smaller particle containing flavine adenine dinucleotide (FAD) and cytochrome b, but no longer able to catalyze electron transfer to oxygen or to cytochrome c. Certain properties of this l-pipecolate dehydrogenase, an FAD-flavoprotein, are reported.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- APPLEBY C. A., MORTON R. K. Lactic dehydrogenase and cytochrome b2 of baker's yeast. Enzymic and chemical properties of the crystalline enzyme. Biochem J. 1959 Nov;73:539–550. doi: 10.1042/bj0730539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BASSO L. V., RAO D. R., RODWELL V. W. Metabolism of pipecolic acid in a Pseudomonas species. II. delta1-Piperideine-6-carboxylic acid and alpha-aminoadipic acid-delta-semial-dehyde. J Biol Chem. 1962 Jul;237:2239–2245. [PubMed] [Google Scholar]
- BRODIE A. F., GRAY C. T. Bacterial particles in oxidative phosphorylation. Science. 1957 Mar 22;125(3247):534–537. doi: 10.1126/science.125.3247.534. [DOI] [PubMed] [Google Scholar]
- Baginsky M. L., Rodwell V. W. Metabolism of Pipecolic Acid in a Pseudomonas Species IV. Electron Transport Particle of Pseudomonas putida. J Bacteriol. 1966 Aug;92(2):424–432. doi: 10.1128/jb.92.2.424-432.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvert A. F., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. 3. L-alpha-aminoadipate delta-semialdehyde:nicotinamide adenine dinucleotide oxidoreductase. J Biol Chem. 1966 Jan 25;241(2):409–414. [PubMed] [Google Scholar]
- Craig J. C., Roy S. K. Optical rotatory dispersion and absolute configuration. I. Alpha-amino acids. Tetrahedron. 1965 Feb;21(2):391–394. doi: 10.1016/s0040-4020(01)98278-x. [DOI] [PubMed] [Google Scholar]
- IRREVERRE F., PIEZ K. A., WOLFF H. L. The separation and determination of cyclic imino acids. J Biol Chem. 1956 Dec;223(2):687–697. [PubMed] [Google Scholar]
- JOHNSON A. B., STRECKER H. J. The interconversion of glutamic acid and proline. IV. The oxidation of proline by rat liver mitochondria. J Biol Chem. 1962 Jun;237:1876–1882. [PubMed] [Google Scholar]
- LARA F. J. The succinic dehydrogenase of Propionibacterium pentosaceum. Biochim Biophys Acta. 1959 Jun;33(2):565–567. doi: 10.1016/0006-3002(59)90153-2. [DOI] [PubMed] [Google Scholar]
- LINNANE A. W., WRIGLEY C. W. FRAGMENTATION OF THE ELECTRON TRANSPORT CHAIN OF ESCHERICHIA COLI. PREPARATION OF A SOLUBLE FORMATE DEHYDROGENASE-CYTOCHROME B1 COMPLEX. Biochim Biophys Acta. 1963 Nov 8;77:408–418. doi: 10.1016/0006-3002(63)90515-8. [DOI] [PubMed] [Google Scholar]
- RAO D. R., RODWELL V. W. Metabolism of pipecolic acid in a Pseudomonas species. I. alpha-Aminoadipic and glutamic acids. J Biol Chem. 1962 Jul;237:2232–2238. [PubMed] [Google Scholar]
- YONEYA T., ADAMS E. Hydroxyproline metabolism. V. Inducible allohydroxy-D-proline oxidase of Pseudomonas. J Biol Chem. 1961 Dec;236:3272–3279. [PubMed] [Google Scholar]
