Abstract
Escherichia coli strains isolated from 151 swine and 108 fowl, which were kept at the Animal Health Center, Maebashi, Japan, were surveyed for drug resistance and distribution of R factors. All of the swine and 38% of the fowl excreted E. coli strains resistant to tetracycline, chloramphenicol, streptomycin, and sulfanilamide, or certain combinations thereof. Among 278 resistant cultures isolated from swine, 13% were found to be resistant to one antibiotic, whereas 87% were resistant to more than one antibiotic. Among these resistant strains, 40% carried R factors which were transferable by the usual conjugal process. The resistance patterns of these R factors included 36% which were singly resistant and 64% which were multiply resistant. Among 54 resistant cultures isolated from fowl, 24% were singly resistant and 76% were multiply resistant. Of the resistant strains from fowl, 22% carried R factors. The resistance patterns of R factors included 50% of the singly resistant type and 50% which were multiply resistant. In spite of feeding with dairy products containing only tetracycline, a high incidence of multiple resistance was observed in the E. coli strains and the R factors isolated from these animals.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSON E. S., DATTA N. RESISTANCE TO PENICILLINS AND ITS TRANSFER IN ENTEROBACTERIACEAE. Lancet. 1965 Feb 20;1(7382):407–409. doi: 10.1016/s0140-6736(65)90004-8. [DOI] [PubMed] [Google Scholar]
- Anderson E. S. Origin of transferable drug-resistance factors in the enterobacteriaceae. Br Med J. 1965 Nov 27;2(5473):1289–1291. doi: 10.1136/bmj.2.5473.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DATTA N. Transmissible drug resistance in an epidemic strain of Salmonella typhimurium. J Hyg (Lond) 1962 Sep;60:301–310. doi: 10.1017/s0022172400020416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARADA K., SUZUKI M., KAMEDA M., MITSUHASHI S. On the drug-resistance of enteric bacteria. 2) Transmission of the drug-resistance among Enterobacteriaceae. Jpn J Exp Med. 1960 Aug;30:289–299. [PubMed] [Google Scholar]
- MITSUHASHI S., HARADA K., HASHIMOTO H., EGAWA R. Drug-resistance of enteric bacteria. 5. Drug-resistance of Escherichia coli isolated from human being. Jpn J Exp Med. 1961 Feb;31:53–60. [PubMed] [Google Scholar]
- MITSUHASHI S., HARADA K., HASHIMOTO H., EGAWA R. On the drug-resistance of enteric bacteria. 4. Drug-resistance of Shigella prevalent in Japan. Jpn J Exp Med. 1961 Feb;31:47–52. [PubMed] [Google Scholar]
- MITSUHASHI S., HARADA K., HASHIMOTO H., KAMEDA M., SUZUKI M. Combination of two types of transmissible drug-resistance factors in a host bacterium. J Bacteriol. 1962 Jul;84:9–16. doi: 10.1128/jb.84.1.9-16.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MITSUHASHI S., HARADA K., HASHIMOTO H. Multiple resistance of enteric bacteria and transmission of drug-resistance to other strain by mixed cultivation. Jpn J Exp Med. 1960 Jun;30:179–184. [PubMed] [Google Scholar]
- Mitsuhashi S., Hashimoto H., Egawa R., Tanaka T., Nagai Y. Drug resistance of enteric bacteria. IX. Distribution of R factors in gram-negative bacteria from clinical sources. J Bacteriol. 1967 Apr;93(4):1242–1245. doi: 10.1128/jb.93.4.1242-1245.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitsuhashi S. Transmissible drug-ressistance factor R with special reference to replication. Gunma J Med Sci. 1965 Dec;14(4):245–257. [PubMed] [Google Scholar]
- Smith D. H., Armour S. E. Transferable R factors in enteric bacteria causing infection of the genitourinary tract. Lancet. 1966 Jul 2;2(7453):15–18. doi: 10.1016/s0140-6736(66)91745-4. [DOI] [PubMed] [Google Scholar]