Abstract
Thirty-two genera of microorganisms were identified with one of six distinctive control patterns for the enzyme 3-deoxy-d-arabino-heptulosonate-7-phosphate synthetase. These patterns included sequential feedback inhibition, isoenzyme feedback inhibition, cumulative feedback inhibition, and three (apparent) simple one-effector patterns. Documentation is provided of an overwhelming tendency for control patterns to be strongly conserved among the member species of the various genera that were examined.
Full text
PDF![1582](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/627efe7fe3f8/jbacter00406-0332.png)
![1583](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/91106024318a/jbacter00406-0333.png)
![1584](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/c231e3dd4a69/jbacter00406-0334.png)
![1585](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/ec99005d3a19/jbacter00406-0335.png)
![1586](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/33cf0d7aed2f/jbacter00406-0336.png)
![1587](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/cb0982708199/jbacter00406-0337.png)
![1588](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/a8e6bb7745f0/jbacter00406-0338.png)
![1589](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/e5a3e89f045c/jbacter00406-0339.png)
![1590](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/8bc3a0969209/jbacter00406-0340.png)
![1591](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/d5d10c59d799/jbacter00406-0341.png)
![1592](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/25e334eee6fe/jbacter00406-0342.png)
![1593](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e2/276866/540c565e7d70/jbacter00406-0343.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackrell B. A., Asato R. N., Mower H. F. Multiple forms of bacterial hydrogenases. J Bacteriol. 1966 Oct;92(4):828–838. doi: 10.1128/jb.92.4.828-838.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROWN K. D., DOY C. H. END-PRODUCT REGULATION OF THE GENERAL AROMATIC-PATHWAY IN ESCHERICHIA COLI W. Biochim Biophys Acta. 1963 Sep 3;77:170–172. doi: 10.1016/0006-3002(63)90489-x. [DOI] [PubMed] [Google Scholar]
- CHAPMAN L. F., CIRILLO V. P., JAHN T. L. PERMEABILITY TO SUGARS AND FATTY ACIDS IN POLYTOMA OBTUSUM. J Protozool. 1965 Feb;12:47–51. doi: 10.1111/j.1550-7408.1965.tb01810.x. [DOI] [PubMed] [Google Scholar]
- Courtright J. B., Imberski R. B., Ursprung H. The genetic control of alcohol dehydrogenase and octanol dehydrogenase isozymes in Drosophila. Genetics. 1966 Nov;54(5):1251–1260. doi: 10.1093/genetics/54.5.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DATTA P., GEST H. CONTROL OF ENZYME ACTIVITY BY CONCERTED FEEDBACK INHIBITION. Proc Natl Acad Sci U S A. 1964 Oct;52:1004–1009. doi: 10.1073/pnas.52.4.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Focht D. D., Lockhart W. R. Numerical survey of some bacterial taxa. J Bacteriol. 1965 Nov;90(5):1314–1319. doi: 10.1128/jb.90.5.1314-1319.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg I. D., Gwinn D. D., Thorne C. B. Interspecies transformation between Bacillus subtilis and Bacillus licheniformis. Biochem Biophys Res Commun. 1966 May 25;23(4):543–548. [PubMed] [Google Scholar]
- HANSEN A. J., WEEKS O. B., COLWELL R. R. TAXONOMY OF PSEUDOMONAS PISCICIDA (BEIN) BUCK, MEYERS, AND LEIFSON. J Bacteriol. 1965 Mar;89:752–761. doi: 10.1128/jb.89.3.752-761.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoch J. A., DeMoss R. D. Physiological role of tryptophanase in control of tryptophan biosynthesis in Bacillus alvei. J Bacteriol. 1966 Feb;91(2):667–672. doi: 10.1128/jb.91.2.667-672.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoch J. A., Demoss R. D. Physiological Effects of a Constitutive Tryptophanase in Bacillus alvei. J Bacteriol. 1965 Sep;90(3):604–610. doi: 10.1128/jb.90.3.604-610.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JENSEN R. A., NESTER E. W. THE REGULATORY SIGNIFICANCE OF INTERMEDIARY METABOLITES: CONTROL OF AROMATIC ACID BIOSYNTHESIS BY FEEDBACK INHIBITION IN BACILLUS SUBTILIS. J Mol Biol. 1965 Jun;12:468–481. doi: 10.1016/s0022-2836(65)80270-4. [DOI] [PubMed] [Google Scholar]
- Jensen R. A., Nester E. W. Regulatory enzymes of aromatic amino acid biosynthesis in Bacillus subtilis. I. Purification and properties of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase. J Biol Chem. 1966 Jul 25;241(14):3365–3372. [PubMed] [Google Scholar]
- Jensen R. A., Nester E. W. Regulatory enzymes of aromatic amino acid biosynthesis in Bacillus subtilis. II. The enzymology of feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase. J Biol Chem. 1966 Jul 25;241(14):3373–3380. [PubMed] [Google Scholar]
- Krieg R. E., Lockhart W. R. Classification of enterobacteria based on overall similarity. J Bacteriol. 1966 Nov;92(5):1275–1280. doi: 10.1128/jb.92.5.1275-1280.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larkin J. M., Stokes J. L. Isolation of psychrophilic species of Bacillus. J Bacteriol. 1966 May;91(5):1667–1671. doi: 10.1128/jb.91.5.1667-1671.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim P. G., Mateles R. I. Tryptophan- and indole-excreting prototrophic mutant of Escherichia coli. J Bacteriol. 1964 May;87(5):1051–1055. doi: 10.1128/jb.87.5.1051-1055.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel M., Weeks O. B., Colwell R. R. Deoxyribonucleic acid base composition of Pseudomonas piscicida. J Bacteriol. 1965 Nov;90(5):1492–1493. doi: 10.1128/jb.90.5.1492-1493.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marmur J., Seaman E., Levine J. INTERSPECIFIC TRANSFORMATION IN BACILLUS. J Bacteriol. 1963 Feb;85(2):461–467. doi: 10.1128/jb.85.2.461-467.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nester E. W., Jensen R. A. Control of aromatic acid biosynthesis in Bacillus subtilis: sequenial feedback inhibition. J Bacteriol. 1966 Apr;91(4):1594–1598. doi: 10.1128/jb.91.4.1594-1598.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROGOSA M. THE GENUS VEILLONELLA. I. GENERAL CULTURAL, ECOLOGICAL, AND BIOCHEMICAL CONSIDERATIONS. J Bacteriol. 1964 Jan;87:162–170. doi: 10.1128/jb.87.1.162-170.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMITH L. C., RAVEL J. M., LAX S. R., SHIVE W. The control of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthesis by phenylalanine and tyrosine. J Biol Chem. 1962 Nov;237:3566–3570. [PubMed] [Google Scholar]
- STADTMAN E. R. Symptosium on multiple forms of enzymes and control mechanisms. II. Enzyme multiplicity and function in the regulation of divergent metabolic pathways. Bacteriol Rev. 1963 Jun;27:170–181. doi: 10.1128/br.27.2.170-181.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stadtman E. R. Allosteric regulation of enzyme activity. Adv Enzymol Relat Areas Mol Biol. 1966;28:41–154. doi: 10.1002/9780470122730.ch2. [DOI] [PubMed] [Google Scholar]
- Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
- Udaka S. Pathway-specific pattern of control of arginine biosynthesis in bacteria. J Bacteriol. 1966 Feb;91(2):617–621. doi: 10.1128/jb.91.2.617-621.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]