Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 Nov;94(5):1648–1655. doi: 10.1128/jb.94.5.1648-1655.1967

Cytochrome Synthesis and Its Regulation in Spirillum itersonii

G D Clark-Walker 1, B Rittenberg 1, J Lascelles 1
PMCID: PMC276874  PMID: 6057811

Abstract

Spirillum itersonii contains b- and c-type cytochromes as well as a carbon monoxide-binding pigment of the cytochrome o type. Synthesis of cytochromes b and c is increased by about two- and fourfold, respectively, when cells are transferred from high to low aeration. The increased concentration of cytochrome is not accompanied by an increase in the respiration rate of the cells. Both cytochrome b and cytochrome c are located in the particulate fraction of cells grown under high or low aeration, and both pigments are fully reducible by succinate. No evidence was found for the accumulation of the protein component of either cytochrome when synthesis of the prosthetic group was limited by iron deficiency, nor did heme or precursors accumulate when protein synthesis was prevented. It was therefore concluded that the formation of the heme prosthetic group is closely integrated with the synthesis of the protein moiety. δ-Aminolevulinate synthase was detected in extracts of the organism. Its activity was correlated with cytochrome synthesis; it was reduced by high aeration and increased under low aeration. The synthase was inhibited by hemin at concentrations of 10 μm or higher. The observations are consistent with a central role for the heme prosthetic group in the regulation of cytochrome synthesis.

Full text

PDF
1648

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURNHAM B. F., PIERCE W. S., WILLIAMS K. R., BOYER M. H., KIRBY C. K. delta-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J. 1963 Jun;87:462–472. doi: 10.1042/bj0870462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CASTOR L. N., CHANCE B. Photochemical determinations of the oxidases of bacteria. J Biol Chem. 1959 Jun;234(6):1587–1592. [PubMed] [Google Scholar]
  3. Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cells. J Cell Biol. 1967 Jul;34(1):1–14. doi: 10.1083/jcb.34.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ESTABROOK R. W., HOLOWINSKY A. Studies on the content and organization of the respiratory enzymes of mitochondria. J Biophys Biochem Cytol. 1961 Jan;9:19–28. doi: 10.1083/jcb.9.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grayzel A. I., Hörchner P., London I. M. The stimulation of globin synthesis by heme. Proc Natl Acad Sci U S A. 1966 Mar;55(3):650–655. doi: 10.1073/pnas.55.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gribble T. J., Schwartz H. C. Effect of protoporphyrin on hemoglobin synthesis. Biochim Biophys Acta. 1965 Jun 8;103(2):333–338. doi: 10.1016/0005-2787(65)90173-5. [DOI] [PubMed] [Google Scholar]
  7. Hammel C. L., Bessman S. P. Heme stimulation of globin synthesis in a cell free system. Science. 1966 May 20;152(3725):1080–1082. doi: 10.1126/science.152.3725.1080. [DOI] [PubMed] [Google Scholar]
  8. Huang M., Biggs D. R., Clark-Walker G. D., Linnane A. W. Chloramphenicol inhibition of the formation of particulate mitochondrial enzymes of Saccharomyces cerevisiae. Biochim Biophys Acta. 1966 Feb 21;114(2):434–436. doi: 10.1016/0005-2787(66)90330-3. [DOI] [PubMed] [Google Scholar]
  9. JACOBS N. J., WOLIN M. J. Electron-transport system of Vibrio succinogenes. I. Enzymes and cytochromes of electron-transport system. Biochim Biophys Acta. 1963 Jan 1;69:18–28. doi: 10.1016/0006-3002(63)91221-6. [DOI] [PubMed] [Google Scholar]
  10. LASCELLES J. Adaptation to form bacteriochlorophyll in Rhodopseudomonas spheroides: changes in activity of enzymes concerned in pyrrole synthesis. Biochem J. 1959 Jul;72:508–518. doi: 10.1042/bj0720508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LASCELLES J. The synthesis of enzymes concerned in bacteriochlorophyll formation in growing cultures of Rhodopseudomonas spheroides. J Gen Microbiol. 1960 Dec;23:487–498. doi: 10.1099/00221287-23-3-487. [DOI] [PubMed] [Google Scholar]
  12. LENHOFF H. M., NICHOLAS D. J., KAPLAN N. O. Effects of oxygen, iron, and molybdenum on routes of electron transfer in Pseudomonas fluorescens. J Biol Chem. 1956 Jun;220(2):983–995. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Labbe R. F., Kurumada T., Onisawa J. The role of succinyl-CoA synthetase in the control of heme biosynthesis. Biochim Biophys Acta. 1965 Dec 16;111(2):403–415. doi: 10.1016/0304-4165(65)90050-4. [DOI] [PubMed] [Google Scholar]
  15. Lascelles J. The regulation of synthesis of iron and magnesium tetrapyrroles. Observations with mutant strains of Rhodopseudomonas spheroides. Biochem J. 1966 Jul;100(1):184–189. doi: 10.1042/bj1000184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Levere R. D., Granick S. Control of hemoglobin synthesis in the cultured chick blastoderm. J Biol Chem. 1967 Apr 25;242(8):1903–1911. [PubMed] [Google Scholar]
  17. MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
  18. Marver H. S., Tschudy D. P., Perlroth M. G., Collins A. Coordinate synthesis of heme and apoenzyme in the formation of tryptophan pyrrolase. Science. 1966 Oct 28;154(3748):501–503. doi: 10.1126/science.154.3748.501. [DOI] [PubMed] [Google Scholar]
  19. PORRA R. J., JONES O. T. Studies on ferrochelatase. 1. Assay and properties of ferrochelatase from a pig-liver mitochondrial extract. Biochem J. 1963 Apr;87:181–185. doi: 10.1042/bj0870181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PORRA R. J., JONES O. T. Studies on ferrochelatase. 2. An in vestigation of the role offerrochelatase in the biosynthesis of various haem prosthetic groups. Biochem J. 1963 Apr;87:186–192. doi: 10.1042/bj0870186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. PORRA R. J., LASCELLES J. HAEMOPROTEINS AND HAEM SYNTHESIS IN FACULTATIVE PHOTOSYNTHETIC AND DENITRIFYING BACTERIA. Biochem J. 1965 Jan;94:120–126. doi: 10.1042/bj0940120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. TABER H. W., MORRISON M. ELECTRON TRANSPORT IN STAPHYLOCOCCI. PROPERTIES OF A PARTICLE PREPARATION FROM EXPONENTIAL PHASE STAPHYLOCOCCUS AUREUS. Arch Biochem Biophys. 1964 May;105:367–379. doi: 10.1016/0003-9861(64)90021-9. [DOI] [PubMed] [Google Scholar]
  23. TISSIERES A., MITCHELL H. K. Cytochromes and respiratory activities in some slow growing strains of Neurospora. J Biol Chem. 1954 May;208(1):241–249. [PubMed] [Google Scholar]
  24. WHITE D. C. Cytochrome and catalase patterns during growth of Haemophilus parainfluenzae. J Bacteriol. 1962 Apr;83:851–859. doi: 10.1128/jb.83.4.851-859.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WHITE D. C. FACTORS AFFECTING THE AFFINITY FOR OXYGEN OF CYTOCHROME OXIDASES IN HEMOPHILUS PARAINFLUENZAE. J Biol Chem. 1963 Nov;238:3757–3761. [PubMed] [Google Scholar]
  26. WHITE D. C., SMITH L. Hematin enzymes of Hemophilus parainfluenzae. J Biol Chem. 1962 Apr;237:1332–1336. [PubMed] [Google Scholar]
  27. White D. C. Effect of glucose on the formation of the membrane-bound electron transport system in Haemophilus parainfluenzae. J Bacteriol. 1967 Feb;93(2):567–573. doi: 10.1128/jb.93.2.567-573.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES