Abstract
Mutants deficient in sporulation were isolated and characterized with respect to antibiotic and protease activity, transformability, growth, and sporulation. All but two mutants could grow on minimal medium containing glucose. The inability of most mutants to incorporate uracil into trichloroacetic acid-precipitable material (ribonucleic acid) during the developmental period, and their response to a number of carbon sources, were used to characterize their biochemical blocks. Reproducible measurements of these responses were possible when the pH of the culture, which changed during growth and greatly influenced the rate of uracil uptake, was adjusted to 6.5. By their response to ribose and glutamate, the sporulation mutants could then be divided into four groups. All mutants of the first three groups produced antibiotic activity against Staphylococcus aureus, whereas all mutants, except one, of the fourth group produced none or very little of this activity. Mutants which did not respond to glutamate belonged to the first three groups; they also grew slowly or not at all on glutamate as sole carbon source. One of these mutants lacked succinic dehydrogenase activity. The results indicate that most of our sporulation mutants are unable to produce or utilize a natural carbon precursor, which is normally used as a slowly available carbon and energy source via the Krebs cycle when other carbon sources are used up. It enters the Krebs cycle as a precursor of α-ketoglutarate, probably via acetylcoenzyme A. All mutants of group four are blocked in this pathway before α-ketoglutarate.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARONSON A. I. CHARACTERIZATION OF MESSENGER RNA IN SPORULATING BACILLUS CEREUS. J Mol Biol. 1965 Mar;11:576–588. doi: 10.1016/s0022-2836(65)80012-2. [DOI] [PubMed] [Google Scholar]
- Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balassa G. Genetic control of RNA turnover in sporulation mutants of Bacillus subtilis. Biochem Biophys Res Commun. 1964 Mar 26;15(3):240–242. doi: 10.1016/0006-291x(64)90153-6. [DOI] [PubMed] [Google Scholar]
- Balassa G. Quantitative regulation of RNA synthesis during sporulation of Bacillus subtilis. Biochem Biophys Res Commun. 1964 Mar 26;15(3):236–239. doi: 10.1016/0006-291x(64)90152-4. [DOI] [PubMed] [Google Scholar]
- Balassa G. Synthèse et fonction des ARN messagers au cours de la sporulation de Bacillus subtilis. Ann Inst Pasteur (Paris) 1966 Feb;110(2):175–191. [PubMed] [Google Scholar]
- DOI R. H., IGARASHI R. T. GENETIC TRANSCRIPTION DURING MORPHOGENESIS. Proc Natl Acad Sci U S A. 1964 Sep;52:755–762. doi: 10.1073/pnas.52.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
- Ryter A., Schaeffer P., Ionesco H. Classification cytologique, par leur stade de blocage, des mutants de sporulation de Bacillus subtilis Marburg. Ann Inst Pasteur (Paris) 1966 Mar;110(3):305–315. [PubMed] [Google Scholar]
- STENT G. S., BRENNER S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci U S A. 1961 Dec 15;47:2005–2014. doi: 10.1073/pnas.47.12.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
