Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1964 Feb;87(2):461–467. doi: 10.1002/path.1700870234

PATHWAYS FOR BIOSYNTHESIS OF A BACTERIAL CAPSULAR POLYSACCHARIDE IV.

Capsule Resynthesis by Decapsulated Resting-Cell Suspensions

Elliot Juni 1, Gloria A Heym 1
PMCID: PMC277031  PMID: 14151072

Abstract

Juni, Elliot (Emory University, Atlanta, Ga.), and Gloria A. Heym. Pathways for biosynthesis of a bacterial capsular polysaccharide. IV. Capsule resynthesis by decapsulated resting-cell suspensions. J. Bacteriol. 87:461–467. 1964.—Methods were devised for stripping capsules from encapsulated bacteria. By use of stripped resting-cell suspensions of a gram-negative capsule-forming coccus, it was shown that polysaccharide capsule resynthesis depends upon the presence of air and an oxidizable substrate. Capsule resynthesis proceeds linearly with time. For a given quantity of stripped cells, the net amount of polysaccharide capsule synthesized is a linear function of the amount of substrate oxidized. The only factor that appears to limit the extent of capsule synthesis by resting cells is the amount of substrate utilized. A series of photomicrographs of wet mounts made in India ink show the appearance of stripped cells and resynthesized capsules formed during oxidation of pyruvate and glucose by stripped resting-cell suspensions.

Full text

PDF
461

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENZIMAN M., BURGER-RACHAMIMOV H. Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum. J Bacteriol. 1962 Oct;84:625–630. doi: 10.1128/jb.84.4.625-630.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERNHEIMER A. W. Synthesis of type III pneumococcal polysaccharide by suspensions of resting cells. J Exp Med. 1953 May;97(5):591–600. doi: 10.1084/jem.97.5.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DUGUID J. P. The demonstration of bacterial capsules and slime. J Pathol Bacteriol. 1951 Oct;63(4):673–685. doi: 10.1002/path.1700630413. [DOI] [PubMed] [Google Scholar]
  4. ENTNER N., DOUDOROFF M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem. 1952 May;196(2):853–862. [PubMed] [Google Scholar]
  5. GROMET-ELHANAN Z., HESTRIN S. Synthesis of cellulose by Acetobacter xylinum. VI. Growth on citric acid-cycle intermediates. J Bacteriol. 1963 Feb;85:284–292. doi: 10.1128/jb.85.2.284-292.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KORNBERG H. L., KREBS H. A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature. 1957 May 18;179(4568):988–991. doi: 10.1038/179988a0. [DOI] [PubMed] [Google Scholar]
  7. SCHRAMM M., GROMET Z., HESTRIN S. Synthesis of cellulose by Acetobacter Xylinum. 3. Substrates and inhibitors. Biochem J. 1957 Dec;67(4):669–679. doi: 10.1042/bj0670669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. TAYLOR W. H., JUNI E. Pathways for biosynthesis of a bacterial capsular polysaccharide. I. Carbohydrate metabolism and terminal oxidation mechanisms of a capsuleproducing coccus. J Bacteriol. 1961 May;81:694–703. doi: 10.1128/jb.81.5.694-703.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. TAYLOR W. H., JUNI E. Pathways for biosynthesis of a bacterial capsular polysaccharide. I. Characterization of the organism and polysaccharide. J Bacteriol. 1961 May;81:688–693. doi: 10.1128/jb.81.5.688-693.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. TAYLOR W. H., JUNI E. Pathways for biosynthesis of a bacterial capsular polysaccharide. III. Syntheses from radioactive substrates. J Biol Chem. 1961 May;236:1231–1234. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES